




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省廣州市增城高級中學2025屆高一數學第一學期期末調研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,若,則()A. B.C. D.2.過點與且圓心在直線上的圓的方程為A. B.C. D.3.在中,角、、的對邊分別為、、,已知,,,則A. B.C. D.4.若a>b,則下列各式正確的是()A. B.C. D.5.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知,則()A. B.1C. D.27.已知函數的定義域和值域都是,則()A. B.C.1 D.8.函數,則函數()A.在上是增函數 B.在上是減函數C.在是增函數 D.在是減函數9.某公司位員工的月工資(單位:元)為,,…,,其均值和方差分別為和,若從下月起每位員工的月工資增加元,則這位員工下月工資的均值和方差分別為A., B.,C, D.,10.長方體中,,,E為中點,則異面直線與CE所成角為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數若關于x的方程有4個解,分別為,,,,其中,則______,的取值范圍是______12.已知冪函數為奇函數,則___________.13.設函數;若方程有且僅有1個實數根,則實數b的取值范圍是__________14.函數(且)的圖像恒過定點______.15.向量與,則向量在方向上的投影為______16.已知,且的終邊上一點P的坐標為,則=______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,點,,在函數的圖象上(1)求函數的解析式;(2)若函數圖象上的兩點,滿足,,求四邊形OMQN面積的最大值18.在單位圓中,已知第二象限角的終邊與單位圓的交點為,若.(1)求、、的值;(2)分別求、、的值.19.已知函數是偶函數(1)求實數的值;(2)若函數的最小值為,求實數的值;(3)當為何值時,討論關于的方程的根的個數20.已知點P是圓C:(x-3)2+y2=4上的動點,點A(-3,0),M是線段AP的中點(1)求點M的軌跡方程;(2)若點M的軌跡與直線l:2x-y+n=0交于E,F兩點,若直角坐標系的原點在以線段為直徑的圓上,求n的值21.已知(1)設,求t的最大值與最小值;(2)求的值域
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】設,求出,再由求出.【詳解】設,因為所以,又,所以,所以.故選:C.2、B【解析】先求得線段AB的中垂線的方程,再根據圓心又在直線上求得圓心,圓心到點A的距離為半徑,可得圓的方程.【詳解】因為過點與,所以線段AB的中點坐標為,,所以線段AB的中垂線的斜率為,所以線段AB的中垂線的方程為,又因為圓心在直線上,所以,解得,所以圓心為,所以圓的方程為.故選:B【點睛】本題主要考查圓的方程的求法,還考查了運算求解的能力,屬于中檔題.3、B【解析】分析:直接利用余弦定理求cosA.詳解:由余弦定理得cosA=故答案為B.點睛:(1)本題主要考查余弦定理在解三角形中的應用,意在考查學生對余弦定理的掌握水平.(2)已知三邊一般利用余弦定理:.4、A【解析】由不等式的基本性質,逐一檢驗即可【詳解】因為a>b,所以a-2>b-2,故選項A正確,2-a<2-b,故選項B錯誤,-2a<-2b,故選項C錯誤,a2,b2無法比較大小,故選項D錯誤,故選A【點睛】本題考查了不等式的基本性質,意在考查學生對該知識的理解掌握水平.5、A【解析】根據終邊相同的角的三角函數值相等,結合充分不必要條件的定義,即可得到答案;【詳解】,當,“”是“”的充分不必要條件,故選:A6、D【解析】根據指數和對數的關系,將指數式化為對數式,再根據換底公式及對數的運算法則計算可得;【詳解】解:,,,,故選:D7、A【解析】分和,利用指數函數的單調性列方程組求解.【詳解】當時,,方程組無解當時,,解得故選:A.8、C【解析】根據基本函數單調性直接求解.【詳解】因為,所以函數在是增函數,故選:C9、D【解析】均值為;方差為,故選D.考點:數據樣本的均值與方差.10、C【解析】以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出異面直線與所成角【詳解】解:長方體中,,,為中點,以為原點,為軸,為軸,為軸,建立空間直角坐標系,,,,,,,,設異面直線與所成角為,則,,異面直線與所成角為故選:【點睛】本題考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,屬于中檔題二、填空題:本大題共6小題,每小題5分,共30分。11、①.1②.【解析】作出圖象,將方程有4個解,轉化為圖象與圖象有4個交點,根據二次函數的對稱性,對數函數的性質,可得的、的范圍與關系,結合圖象,可得m的范圍,綜合分析,即可得答案.【詳解】作出圖象,由方程有4個解,可得圖象與圖象有4個交點,且,如圖所示:由圖象可知:且因為,所以,由,可得,因為,所以所以,整理得;當時,令,可得,由韋達定理可得所以,因為且,所以或,則或,所以故答案為:1,【點睛】解題的關鍵是將函數求解問題,轉化為圖象與圖象求交點問題,再結合二次函數,對數函數的性質求解即可,考查數形結合,分析理解,計算化簡的能力,屬中檔題.12、【解析】根據冪函數的定義,結合奇函數的定義進行求解即可.【詳解】因為是冪函數,所以,或,當時,,因為,所以函數是偶函數,不符合題意;當時,,因為,所以函數是奇函數,符合題意,故答案為:13、【解析】根據分段函數的解析式作出函數圖象,將方程有且僅有1個實數根轉化為函數與直線有一個交點,然后數形結合即可求解.【詳解】作出函數的圖象,如圖:結合圖象可得:,故答案為:.14、【解析】根據指數函數恒過定點的性質,令指數冪等于零即可.【詳解】由,.此時.故圖像恒過定點.故答案為:【點睛】本題主要考查指數函數恒過定點的性質,屬于簡單題.15、【解析】在方向上的投影為考點:向量的投影16、【解析】先求解,判斷的終邊在第四象限,計算,結合,即得解【詳解】由題意,故點,故終邊在第四象限且,又故故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由圖可求出,從而求得,由圖可知函數處取得最小值,從而可求出的值,再將點的坐標代入函數中可求出,進而可求出函數的解析式,(2)由題意求得所以,,而四邊形OMQN的面積為S,則,代入化簡利用三角函數的性質可求得結果【小問1詳解】由圖可知的周期T滿足,得又因為,所以,解得又在處取得最小值,即,得,所以,,解得,因為,所以.由,得,所以綜上,【小問2詳解】當時,,所以.由知此時記四邊形OMQN的面積為S,則又因為,所以,所以當,即時,取得最大值所以四邊形OMQN面積的最大值是18、(1),,(2),,【解析】(1)先由三角函數的定義得到,再利用同角三角函數基本關系進行求解;(2)利用誘導公式進行化簡求值.【小問1詳解】解:由三角函數定義,得,由得,又因為為第二象限角,所以,則;【小問2詳解】解:由誘導公式,得:,則,.19、(1)(2)(3)當時,方程有一個根;當時,方程沒有根;當或或時,方程有兩個根;當時,方程有三個根;當時,方程有四個根【解析】(1)利用偶函數滿足,求出的值;(2)對函數變形后利用二次函數的最值求的值;(3)定義法得到的單調性,方程通過換元后得到的根的情況,通過分類討論最終求出結果.【小問1詳解】由題意得:,即,所以,其中,∴,解得:【小問2詳解】,∴,故函數的最小值為,令,故的最小值為,等價于,解得:或,無解綜上:【小問3詳解】由,令,,有由,有,,可得,可知函數為增函數,故當時,函數單調遞增,由函數為偶函數,可知函數的增區間為,減區間為,令,有,方程(記為方程①)可化為,整理為:(記為方程②),,當時,有,此時方程②無解,可得方程①無解;當時,時,方程②的解為,可得方程①僅有一個解為;時,方程②的解為,可得方程①有兩個解;當時,可得或,1°當方程②有零根時,,此時方程②還有一根為,可得此時方程①有三個解;2°當方程②有兩負根時,可得,不可能;3°當方程②有兩正根時,可得:,又由,可得,此時方程①有四個根;4°當方程②有一正根一負根時,,可得:或,又由,可得或,此時方程①有兩個根,由上知:當時,方程①有一個根;當時,方程①沒有根;當或或時,方程①有兩個根;當時,方程①有三個根;當時,方程①有四個根【點睛】對于復合函數根的個數問題,要用換元法來求解,通常方法會用到根的判別式,導函數,基本不等式等.20、(1);(2)【解析】(1)設,,,利用為中點,表示出,代入圓方程即可;(2)根據軌跡以及結合韋達定理、平面向量的數量積,列出關于的方程即可【詳解】(1)設為所求軌跡上的任意一點,點P為,則.①又是線段AP的中點,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能家居與制造商協同發展-洞察闡釋
- 供應鏈不確定性管理-洞察闡釋
- 租賃安全合同范本6篇
- 別墅裝修委托合同3篇
- 有關二手房購房合同4篇
- 有關財產抵押合同范本3篇
- 吊車出租合同
- 二手轉讓機器合同范本3篇
- 農村菜場承包經營權轉讓與品牌推廣合同
- 茶藝館與茶葉加工技術合作合同范本
- 電子產品出廠檢驗報告
- 《施工現場消防》課件
- 中心靜脈深靜脈導管維護操作評分標準
- 某地區地質災害-崩塌勘查報告
- 2024年新高考適應性考試俄語試題含答案
- 非法營運培訓課件
- 《海拉EPS傳感器》課件
- 子宮頸癌護理查房課件
- 石油開采技術的智能化應用
- SH/T 3543-2007 石油化工建設工程項目施工過程技術文件規定
- 化糞池清理整體作業服務方案
評論
0/150
提交評論