河南省開封市、商丘市九校2025屆數學高二上期末監測模擬試題含解析_第1頁
河南省開封市、商丘市九校2025屆數學高二上期末監測模擬試題含解析_第2頁
河南省開封市、商丘市九校2025屆數學高二上期末監測模擬試題含解析_第3頁
河南省開封市、商丘市九校2025屆數學高二上期末監測模擬試題含解析_第4頁
河南省開封市、商丘市九校2025屆數學高二上期末監測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省開封市、商丘市九校2025屆數學高二上期末監測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在棱長為1的正方體中,P、Q、R分別是棱AB、BC、的中點,以PQR為底面作一個直三棱柱,使其另一個底面的三個頂點也都在正方體的表面上,則這個直三棱柱的體積為()A. B.C. D.2.如圖,樣本和分別取自兩個不同的總體,它們的平均數分別為和,標準差分別為和,則()AB.C.D.3.設太陽光線垂直于平面,在陽光下任意轉動棱長為一個單位的立方體,則它在平面上的投影面積的最大值是()A.1 B.C. D.4.直線與直線平行,則兩直線間的距離為()A. B.C. D.5.已知動點的坐標滿足方程,則的軌跡方程是()A. B.C. D.6.一動圓與圓外切,而與圓內切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支7.用數學歸納法證明“”時,由假設證明時,不等式左邊需增加的項數為()A. B.C. D.8.已知,是雙曲線C:(,)的兩個焦點,過點與x軸垂直的直線與雙曲線C交于A、B兩點,若是等腰直角三角形,則雙曲線C的離心率為()A. B.C. D.9.將一張坐標紙折疊一次,使點與重合,求折痕所在直線是()A. B.C. D.10.已知雙曲線的漸近線方程為,則該雙曲線的離心率等于()A. B.C.2 D.411.已知直線,若直線與垂直,則的傾斜角為()A. B.C. D.12.命題,,則是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.與同一條直線都相交的兩條直線的位置關系是________14.若,且,則的最小值是____________.15.若點為圓上的一個動點,則點到直線距離的最大值為________16.的展開式中所有項的系數和為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,在處有極值.(1)求、的值;(2)若,有個不同實根,求的范圍.18.(12分)已知的二項展開式中所有項的二項式系數之和為,(1)求的值;(2)求展開式的所有有理項(指數為整數),并指明是第幾項19.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由20.(12分)已知數列是等差數列,且,.(1)若數列中依次取出第2項,第4項,第6項,…,第項,按原來順序組成一個新數列,試求出數列的通項公式;(2)令,求數列的前項和.21.(12分)如圖1是直角梯形,以為折痕將折起,使點C到達的位置,且平面與平面垂直,如圖2(1)求異面直線與所成角的余弦值;(2)在棱上是否存在點P,使平面與平面的夾角為?若存在,則求三棱錐的體積,若不存在,則說明理由22.(10分)在如圖三角形數陣中第n行有n個數,表示第i行第j個數,例如,表示第4行第3個數.該數陣中每一行的第一個數從上到下構成以m為公差的等差數列,從第三行起每一行的數從左到右構成以m為公比的等比數列(其中).已知.(1)求m及;(2)記,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分別取的中點,連接,利用棱柱的定義證明幾何體是三棱柱,再證明平面PQR,得到三棱柱是直三棱柱求解.【詳解】如圖所示:連接,分別取其中點,連接,則,且,所以幾何體是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因為正方體的棱長為1,所以,所以直三棱柱的體積為,故選:C2、B【解析】直接根據圖表得到答案.【詳解】根據圖表:樣本數據均小于等于10,樣本數據均大于等于10,故;樣本數據波動大于樣本數據,故.故選:B.3、C【解析】確定正方體投影面積最大時,是投影面與平面AB'C平行,從而求出投影面積的最大值.【詳解】設正方體投影最大時,是投影面與平面AB'C平行,三個面的投影為兩個全等的菱形,其對角線為,即投影面上三條對角線構成邊長為的等邊三角形,如圖所示,所以投影面積為故選:C4、B【解析】先根據直線平行求得,再根據公式可求平行線之間的距離.【詳解】由兩直線平行,得,故,當時,,,此時,故兩直線平行時又之間的距離為,故選:B.5、C【解析】此方程表示點到點的距離與到點的距離之差為8,而這正好符合雙曲線的定義,點的軌跡是雙曲線的右支,,的軌跡方程是,故選C.6、A【解析】依據定義法去求動圓的圓心的軌跡即可解決.【詳解】設動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點長軸長為9的橢圓.故選:A7、C【解析】當成立,寫出左側的表達式,當時,寫出對應的關系式,觀察計算即可【詳解】從到成立時,左邊增加的項為,因此增加的項數是,故選:C8、B【解析】根據等腰直角三角形的性質,結合雙曲線的離心率公式進行求解即可.【詳解】由題意不妨設,,當時,由,不妨設,因為是等腰直角三角形,所以有,或舍去,故選:B9、D【解析】設,,則折痕所在直線是線段AB的垂直平分線,故求出AB中點坐標,折痕與直線AB垂直,進而求出斜率,用點斜式求出折痕所在直線方程.【詳解】,,所以與的中點坐標為,又,所以折痕所在直線的斜率為1,故折痕所在直線是,即.故選:D10、A【解析】由雙曲線的漸近線方程,可得,再由的關系和離心率公式,計算即可得到所求值【詳解】解:雙曲線的漸近線方程為,由題意可得即,可得由可得,故選:A.11、D【解析】由直線與垂直得到的斜率,再利用斜率與傾斜角的關系即可得到答案.【詳解】因為直線與垂直,且,所以,解得,設的傾斜角為,,所以.故選:D12、D【解析】根據特稱命題的否定為全稱命題,即可得到答案.【詳解】因為命題,,所以,.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、平行,相交或者異面【解析】由空間中兩直線的位置關系求解即可【詳解】由題意與同一條直線都相交的兩條直線的位置關系可能是:平行,相交或者異面,故答案為:平行,相交或者異面,14、【解析】應用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當且僅當,且,即時等號成立,∴最小值為.故答案為:15、7【解析】根據給定條件求出圓C的圓心C到直線l的距離即可計算作答.【詳解】圓的圓心,半徑,點C到直線的距離,所以圓C上點P到直線l距離的最大值為.故答案為:716、##0.015625【解析】賦值法求解二項式展開式中所有項的系數和.【詳解】令得:,即為展開式中所有項的系數和.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)根據題設條件可得,由此可解得與的值(2)依題意可知直線與函數的圖象有三個不同的交點,則的取值范圍介于極小值與極大值之間.【小問1詳解】因為函數,在處有極值,所以,即,解得,.【小問2詳解】由(1)知,,所以在上,,單調遞增,在上,,單調遞減,在上,,單調遞增,所以,,若有3個不同實根,則,所以的取值范圍為.18、(1)(2)【解析】(1)由二項式系數和公式可得答案;(2)求出的通項,利用的指數為整數可得答案.【小問1詳解】的二項展開式中所有項的二項式系數之和,所以.【小問2詳解】,因此時,有理項,有理項是第一項和第七項.19、(1)(2)存在,【解析】(1)根據題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設,然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結果【小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設點到平面的距離為,因為,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,,所以以為原點,建立如圖所示的空間直角坐標系,則,設,則,設平面的法向量為,則,令,則,設平面的法向量為,則,令,則,則平面與平面夾角的余弦值為,兩邊平方得,,解得或(舍去),所以,所以20、(1),;(2).【解析】(1)利用等差數列性質求出數列公差及通項公式,由求解作答.(2)由(1)的結論求出,再用錯位相減法計算作答.【小問1詳解】等差數列中,,解得,公差,則,因此,,依題意,,所以數列的通項公式,.【小問2詳解】由(1)知,,則,因此,,,所以.21、(1)(2)存在,靠近點D的三等分點.【解析】(1)由題意建立空間直接坐標系,求得的坐標,由求解;(2)假設棱上存在點P,設,求得點p坐標,再求得平面PBE的一個法向量,由平面,得到為平面的一個法向量,然后由求解.【小問1詳解】解:因為,所以四邊形ABCE是平行四邊形,又,所以四邊形ABCE是菱形,,又平面與平面垂直,又平面與平面=EB,所以平面,建立如圖所示空間直接坐標系:則,所以,則,所以異面直線與所成角的余弦值是;【小問2詳解】假設棱上存在點P,使平面與平面的夾角為,設,則,又,設平面PBE的一個法向量為,則,即,則,由平面,則為平面的一個法向量,所以,解得.22、(1),;(2)【解析】(1)根據題意以m表示出,由即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論