




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
曲靖市重點中學2025屆高二上數學期末學業水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.有6本不同的書,按下列方式進行分配,其中分配種數正確的是()A.分給甲、乙、丙三人,每人各2本,有15種分法;B.分給甲、乙、丙三人中,一人4本,另兩人各1本,有180種分法;C.分給甲乙每人各2本,分給丙丁每人各1本,共有90種分法;D.分給甲乙丙丁四人,有兩人各2本,另兩人各1本,有1080種分法;2.已知圓柱的底面半徑是1,高是2,那么該圓柱的側面積是()A.2 B.C. D.3.在中,若,則()A.150° B.120°C.60° D.30°4.七巧板是中國古代勞動人民發明的一種傳統智力玩具,它由五塊等腰直角三角形、一塊正方形和一塊平行四邊形共七塊板組成如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為()A. B.C. D.5.已知等差數列中的、是函數的兩個不同的極值點,則的值為()A. B.1C.2 D.36.命題,,則是()A., B.,C., D.,7.數學家歐拉在1765年發現,任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點,,若其歐拉線的方程為,則頂點的坐標為()A. B.C. D.8.若拋物線上的點到其焦點的距離是到軸距離的倍,則等于A. B.1C. D.29.命題:,否定是()A., B.,C., D.,10.已知,則“”是“”的()A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件11.下列語句為命題的是()A. B.你們好!C.下雨了嗎? D.對頂角相等12.德國數學家高斯是近代數學奠基者之一,有“數學王子”之稱,在歷史上有很大的影響.他幼年時就表現出超人的數學天才,10歲時,他在進行的求和運算時,就提出了倒序相加法的原理,該原理基于所給數據前后對應項的和呈現一定的規律生成,因此,此方法也稱之為高斯算法.已知數列,則()A.96 B.97C.98 D.99二、填空題:本題共4小題,每小題5分,共20分。13.已知是數列的前n項和,且,則________;數列的通項公式________14.已知函數,則的值是______.15.若滿足約束條件,則的最小值為________.16.已知圓和直線.(1)求直線l所經過的定點的坐標,并判斷直線與圓的位置關系;(2)求當k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:的一個頂點為,離心率為,直線與橢圓交于不同的兩點M,N(1)求橢圓的標準方程;(2)當的面積為時,求的值18.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線的方程;(Ⅱ)設直線與拋物線相交于,兩點,為坐標原點,證明:.19.(12分)已知函數.(1)討論的單調性;(2)當時,求函數在內的零點個數.20.(12分)已知直線和的交點為(1)若直線經過點且與直線平行,求直線的方程;(2)若直線經過點且與兩坐標軸圍成的三角形的面積為,求直線的方程21.(12分)已知拋物線C:,過點且斜率為k的直線與拋物線C相交于P,Q兩點.(1)設點B在x軸上,分別記直線PB,QB的斜率為.若,求點B的坐標;(2)過拋物線C的焦點F作直線PQ的平行線與拋物線C相交于M,N兩點,求的值.22.(10分)在中,已知,,,,分別為邊,的中點,于點.(1)求直線方程;(2)求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據題意,分別按照選項說法列式計算驗證即可做出判斷.【詳解】選項A,6本不同的書分給甲、乙、丙三人,每人各2本,有種分配方法,故該選項錯誤;選項B,6本不同的書分給甲、乙、丙三人,一人4本,另兩人各1本,先將6本書分成4-1-1的3組,再將三組分給甲乙丙三人,有種分配方法,故該選項錯誤;選項C,6本不同的書分給甲乙每人各2本,有種方法,其余分給丙丁每人各1本,有種方法,所以不同的分配方法有種,故該選項錯誤;選項D,先將6本書分為2-2-1-14組,再將4組分給甲乙丙丁4人,有種方法,故該選項正確.故選:D.2、D【解析】由圓柱的側面積公式直接可得.【詳解】故選:D3、C【解析】根據正弦定理將化為邊之間的關系,再結合余弦定理可得答案.【詳解】若,則根據正弦定理得:,即,而,故,故選:C.4、D【解析】設正方形的邊長為,計算出陰影部分區域的面積和正方形區域的面積,然后利用幾何概型的概率公式計算出所求事件的概率.【詳解】設大正方形的邊長為,則面積為,陰影部分由一個大等腰直角三角形和一個梯形組成大等腰直角三角形的面積為,梯形的上底為,下底為,高為,面積為,故所求概率故選:D.5、C【解析】對求導,由題設及根與系數關系可得,再根據等差中項的性質求,最后應用對數運算求值即可.【詳解】由題設,,由、是的兩個不同的極值點,所以,又是等差數列,所以,即,故.故選:C6、D【解析】根據特稱命題的否定為全稱命題,即可得到答案.【詳解】因為命題,,所以,.故選:D7、A【解析】設,計算出重心坐標后代入歐拉方程,再求出外心坐標,根據外心的性質列出關于的方程,最后聯立解方程即可.【詳解】設,由重心坐標公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點為,,的中垂線方程為,即聯立,解得的外心為則,整理得:②聯立①②得:,或,當,時,重合,舍去頂點的坐標是故選:A【點睛】關鍵點睛:解決本題的關鍵一是求出外心,二是根據外心的性質列方程.8、D【解析】根據拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點睛】本題主要考查了拋物線的定義和性質.考查了考生對拋物線定義的掌握和靈活應用,屬于基礎題9、D【解析】根據給定條件利用全稱量詞命題的否定是存在量詞命題直接寫出作答.【詳解】命題:,是全稱量詞命題,其否定是存在量詞命題,所以命題:,的否定是:,.故選:D10、B【解析】求得中的取值范圍,由此確定充分、必要條件.【詳解】,,所以“”是“”的充要條件.故選:B11、D【解析】根據命題的定義判斷即可.【詳解】因為能夠判斷真假的語句叫作命題,所以ABC錯誤,D正確.故選:D12、C【解析】令,利用倒序相加原理計算即可得出結果.【詳解】令,,兩式相加得:,∴,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】當時,,推導出,從而數列是從第二項起,公比為的等比數列,進而能求出數列的通項公式,即可求得答案.【詳解】為數列的前項和,①時,②①②,得:,,,,數列的通項公式為.故答案為:;.14、【解析】求出,代值計算可得的值.【詳解】因為,則,因此,.故答案為:.15、5【解析】作出可行域,作直線,平移該直線可得最優解【詳解】作出可行域,如圖內部(含邊界),作直線,直線中是直線的縱截距,代入得,即平移直線,當直線過點時取得最小值5故答案為:516、(1)直線過定點P(4,3),直線和圓總有兩個不同交點(2)k=1,【解析】(1)把直線方程化為點斜式方程即可;(2)由圓的性質知,當直線與PC垂直時,弦長最短.【小問1詳解】直線方程可化為,則直線過定點P(4,3),又圓C標準方程為,圓心為,半徑為,而,所以點P在圓內,所以不論k取何值,直線和圓總有兩個不同交點.【小問2詳解】由圓的性質知,當直線與PC垂直時,弦長最短.,所以k=1時弦長最短.弦長為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由橢圓的一個頂點為,得到,再由橢圓的離心率為,求得,進而求得橢圓的標準方程;(2)由橢圓的對稱性得到,聯立方程組求得,根據的面積為,列出方程,即可求解.【小問1詳解】解:由題意,橢圓的一個頂點為,可得,又由橢圓的離心率為,可得,所以,則,所以橢圓的標準方程為.【小問2詳解】解:設,且根據橢圓的對稱性得,聯立方程組,整理得,解得,因為的面積為,可得,解得.18、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯立,通過韋達定理求解直線的斜率關系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設,.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關系;拋物線的標準方程19、(1)當,在單調遞增;當,在單調遞增,在單調遞減.(2)0.【解析】(1)求得,對參數分類討論,即可由每種情況下的正負確定函數的單調性;(2)根據題意求得,利用進行放縮,只需證即,再利用導數通過證明從而得到恒成立,則問題得解.【小問1詳解】以為,其定義域為,又,故當時,,在單調遞增;當時,令,可得,且令,解得,令,解得,故在單調遞增,在單調遞減.綜上所述:當,在單調遞增;當,在單調遞增,在單調遞減.【小問2詳解】因為,故可得,則,;下證恒成立,令,則,故在單調遞減,又當時,,故在恒成立,即;因為,故,令,下證在恒成立,要證恒成立,即證,又,故即證,令,則,令,解得,此時該函數單調遞增,令,解得,此時該函數單調遞減,又當時,,也即;令,則,令,解得,此時該函數單調遞減,令,解得,此時該函數單調遞增,又當時,,也即;又,故恒成立,則在恒成立,又,故當時,恒成立,則在上的零點個數是.【點睛】本題考察利用導數研究含參函數的單調性,以及函數零點問題的處理;本題第二問處理的關鍵是通過分離參數和構造函數,證明恒成立,屬綜合困難題.20、(1)(2)或【解析】(1)由已知可得交點坐標,再根據直線間的位置關系可得直線方程;(2)設直線方程,根據直線與兩坐標軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯立的方程,解得,即設直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標軸上的截距均不為,設直線方程為:,則直線與兩坐標軸交點為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設直線的斜率為,則的方程為,當時,當時,所以,解得:或所以m的方程為或即:或.21、(1)(2)【解析】(1)直線的方程為,其中,聯立直線與拋物線方程,由韋達定理結合已知條件可求得點的坐標;(2)直線的方程為,利用傾斜角定義知,,聯立直線與拋物線方程,利用弦長公式求得,進而得解.小問1詳解】由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年全球及中國外延片檢測系統行業頭部企業市場占有率及排名調研報告
- 2025-2030年中國四耳接線盒項目投資可行性研究分析報告
- 2024年全球及中國商業養老服務中心行業頭部企業市場占有率及排名調研報告
- 洪洞格賓石籠施工方案
- 2025年海上風電場工程項目可行性研究報告
- 進度分析報告示例
- 證券知識培訓課件
- 中國制傘市場深度調查及發展前景研究預測報告
- 2025年中國彈性水泥防水涂料行業市場發展前景及發展趨勢與投資戰略研究報告
- 股權轉讓合同
- 單機試車檢查、聯動試車確認表
- 一例腎破裂伴胸腔積液患者疑難病例討論
- JB∕T 13883-2020 閥門電液執行裝置
- 山東省東營市廣饒縣2023-2024學年八年級下學期期中考試語文試題
- JJG 621-2012 液壓千斤頂行業標準
- 地下工程暗挖隧道施工質量控制培訓課件
- 數學廣角-推理測試題
- 2024年矚目世界大事件
- 護理站站長述職報告
- 小學科學湘科版四年級下冊全冊同步練習含答案
- 體檢護理質量改善項目匯報
評論
0/150
提交評論