




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河池市重點中學2025屆數學高二上期末調研試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一道數學試題,甲、乙兩位同學獨立完成,設命題是“甲同學解出試題”,命題是“乙同學解出試題”,則命題“至少一位同學解出試題”可表示為()A. B.C. D.2.直線l:的傾斜角為()A. B.C. D.3.設是公比為的等比數列,則“”是“為遞增數列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件4.雙曲線的焦點坐標是()A. B.C. D.5.設是等比數列,且,,則()A.12 B.24C.30 D.326.在等差數列中,已知,則數列的前6項之和為()A.12 B.32C.36 D.377.在空間直角坐標系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.8.【山東省濰坊市二模】已知雙曲線的離心率為,其左焦點為,則雙曲線的方程為()A. B.C. D.9.如果命題為真命題,為假命題,那么()A.命題,都是真命題 B.命題,都是假命題C.命題,至少有一個是真命題 D.命題,只有一個是真命題10.我們知道∶用平行于圓錐母線的平面(不過頂點)截圓錐,則平面與圓錐側面的交線是拋物線一部分,如圖,在底面半徑和高均為2的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點,已知過CD與E的平面與圓錐側面的交線是以E為頂點的圓錐曲線的一部分,則該圓錐曲線的焦點到其準線的距離等于()A. B.C. D.111.“”是“直線與圓相切”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.過點的直線與圓相切,則直線的方程為()A.或 B.或C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知復數對應的點在復平面第一象限內,甲、乙、丙三人對復數的陳述如下為虛數單位:甲:;乙:;丙:,在甲、乙、丙三人陳述中,有且只有兩個人的陳述正確,則復數______14.函數在處的切線方程是_________15.由曲線圍成的圖形的面積為________16.當為任意實數時,直線恒過定點,則以點C為圓心,半徑為圓的標準方程______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四面體ABCD中,CB=CD,,且E,F分別是AB,BD的中點,求證:(I)直線;(II).18.(12分)已知離心率為的橢圓經過點.(1)求橢圓的方程;(2)若不過點的直線交橢圓于兩點,求面積的最大值.19.(12分)已知的內角A,B,C所對的邊分別為a,b,c,且(1)求;(2)若,求的面積的最大值20.(12分)在直角坐標系中,以坐標原點O為圓心的圓與直線相切.(1)求圓O的方程;(2)設圓O交x軸于A,B兩點,點P在圓O內,且是、的等比中項,求的取值范圍.21.(12分)如圖,AC是圓O的直徑,B是圓O上異于A,C的一點,平面ABC,點E在棱PB上,且,,.(1)求證:;(2)當三棱錐的體積最大時,求二面角的余弦值.22.(10分)國家助學貸款由國家指定的商業銀行面向在校全日制高等學校經濟困難學生發放.用于幫助他們支付在校期間的學習和日常生活費.從年秋季學期起,全日制普通本專科學生每人每年申請貸款額度由不超過元提高至不超過元,助學貸款償還本金的寬限期從年延長到年.假如學生甲在本科期間共申請到元的助學貸款,并承諾在畢業后年內還清,已知該學生畢業后立即參加工作,第一年的月工資為元,第個月開始,每個月工資比前一個月增加直到元,此后工資不再浮動.(1)學生甲參加工作后第幾個月的月工資達到元;(2)如果學生甲從參加工作后的第一個月開始,每個月除了償還應有的利息外,助學貸款的本金按如下規則償還:前個月每個月償還本金元,第個月開始到第個月每個月償還的本金比前一個月多元,第個月償還剩余的本金.則他第個月的工資是否足夠償還剩余的本金.(參考數據:;;)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據“或命題”的定義即可求得答案.【詳解】“至少一位同學解出試題”的意思是“甲同學解出試題,或乙同學解出試題”.故選:D.2、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.3、D【解析】當時,不是遞增數列;當且時,是遞增數列,但是不成立,所以選D.考點:等比數列4、B【解析】根據雙曲線的方程,求得,結合雙曲線的幾何性質,即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點再軸上,所以雙曲線的焦點坐標為.故選:B.5、D【解析】根據已知條件求得的值,再由可求得結果.【詳解】設等比數列的公比為,則,,因此,.故選:D.【點睛】本題主要考查等比數列基本量的計算,屬于基礎題6、C【解析】直接按照等差數列項數性質求解即可.【詳解】數列的前6項之和為.故選:C.7、A【解析】根據給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A8、D【解析】分析:根據題設條件,列出方程,求出,,的值,即可求得雙曲線得標準方程詳解:∵雙曲線的離心率為,其左焦點為∴,∴∵∴∴雙曲線的標準方程為故選D.點睛:本題考查雙曲線的標準方程,雙曲線的簡單性質的應用,根據題設條件求出,,的值是解決本題的關鍵.9、D【解析】由命題為真命題,可判斷二者至少有一個為真命題,由為假命題,可判斷二者至少有一個為假命題,由此可得答案.【詳解】命題為真命題,說明二者至少有一個為真命題,為假命題,說明二者至少有一個為假命題,綜合上述,可知命題,只有一個是真命題,故選:D10、C【解析】由圓錐的底面半徑和高及E的位置可得,建立適當的平面直角坐標系,可得C的坐標,設拋物線的方程,將C的坐標代入求出拋物線的方程,進而可得焦點到其準線的距離【詳解】設AB,CD的交點為,連接PO,由題意可得PO⊥面AB,所以PO⊥OB,由題意OB=OP=OC=2,因為E是母線PB的中點,所以,由題意建立適當的坐標系,以BP為y軸以OE為x軸,E為坐標原點,如圖所示∶可得∶,設拋物線的方程為y2=mx,將C點坐標代入可得,所以,所以拋物線的方程為∶,所以焦點坐標為,準線方程為,所以焦點到其準線的距離為故選:C11、A【解析】根據題意,結合直線與圓的位置關系求出,即可求解.【詳解】根據題意,由直線與圓相切,知圓心到直線的距離,解得或,因此“”是“直線與圓相切”的充分不必要條件.故選:A.12、D【解析】根據斜率存在和不存在分類討論,斜率存在時設直線方程,由圓心到直線距離等于半徑求解【詳解】圓心為,半徑為2,斜率不存在時,直線滿足題意,斜率存在時,設直線方程為,即,由,得,直線方程為,即故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】設,則,然后分別求出甲,乙,丙對應的結論,先假設甲正確,則得出乙錯誤,丙正確,由此即可求解【詳解】解:設,則,甲:由可得,則,乙:由可得:,丙:由可得,即,所以,若,則,則不成立,,則,解得或,所以甲,丙正確,乙錯誤,此時或,又復數對應的點在復平面第一象限內,所以,故答案為:14、【解析】求得,利用導數的幾何意義,結合直線的點斜式方程,即可求得結果.【詳解】因為,則,,,故在處的切線方程是,整理得:.故答案為:.15、【解析】曲線圍成的圖形關于軸,軸對稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發生改變,故曲線關于關于軸,軸對稱,因此只需求出第一象限的面積即可.當,時,曲線可化為:,在第一象限為弓形,其面積為,故.故答案為:.16、【解析】先求得直線過的定點C,再寫出圓的標準方程.【詳解】直線可化為,則,解得,所以直線恒過定點,所以以點C為圓心,半徑為圓的標準方程是,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I)證明見解析(II)證明見解析【解析】證明:(I)E,F分別為AB,BD的中點(II),又,所以18、(1);(2).【解析】(1)根據,可設,,求出,得到橢圓的方程,代入點的坐標,求出,即可得出結果.(2)設出點,的坐標,直線與橢圓方程聯立,利用韋達定理求出弦長,由點到直線的距離公式,三角形的面積公式及基本不等式可得結論.【詳解】(1)因為,所以設,,則,橢圓的方程為.代入點的坐標得,,所以橢圓的方程為.(2)設點,的坐標分別為,,由,得,即,,,,.,點到直線的距離,的面積,當且僅當,即時等號成立.所以當時,面積的最大值為.【點睛】本題主要考查了橢圓的標準方程和性質,直線與橢圓相交問題.屬于中檔題.19、(1)(2)【解析】(1)由正弦定理將邊化為角,結合三角函數的兩角和的正弦公式,可求得答案;(2)由余弦定理結合基本不等式可求得,再利用三角形面積公式求得答案.【小問1詳解】由正弦定理及,得,∵∴,∵,∴【小問2詳解】由余弦定理,∴,即,當且僅當時取等號,∴,當且僅當時等號成立,∴的面積的最大值為20、(1);(2).【解析】(1)根據題意設出圓方程,結合該圓與直線相切,求得半徑,則問題得解;(2)設出點的坐標為,根據題意,求得的等量關系,再構造關于的函數關系,求得函數值域即可.【小問1詳解】根據題意,設的方程為,又該圓與直線相切,故可得,則圓的方程為.【小問2詳解】對圓:,令,則,不妨設,則,設點,因為點在圓內,故;因為是、的等比中項,故可得:,則,整理得;由可得,解得,則.故答案為:.21、(1)證明見解析(2)【解析】(1)由圓的性質可得,再由線面垂直的性質可得,從而由線面垂直的判定定理可得平面PAB,所以得,再結合已知條件可得平面PBC,由線面垂直的性質可得結論;(2)由已知條件結合基本不等式可得當三棱錐的體積最大時,是等腰直角三角形,,從而以OB,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,利用空間向量求解.【小問1詳解】證明:因為AC是圓O的直徑,點B是圓O上不與A,C重合的一個動點,所以.因為平面ABC,平面ABC,所以.因為,且AB,平面PAB,所以平面PAB.因為平面PAB,所以.因為,,且BC,平面PBC,所以平面PBC.因為平面PBC,所以.【小問2詳解】解:因為,,所以,所以三棱錐的體積,(當且僅當“”時等號成立).所以當三棱錐的體積最大時,是等腰直角三角形,.所以以OB,OC所在直線分別為x軸,y軸,以過點O且垂直于圓O平面的直線為z軸建立如圖所示的空間直角坐標系,則,,,.因為∽,所以,因為,,所以,所以,.設向量為平面的一個法向量,則即令得,.向量為平面ABC的一個法向量,.因為二面角是銳角,所以二面角的余弦值為.22、(1);(2)不能,理由見解析.【解析】(1)設甲參加工作后第個月的月工資達到元,根據已知條件可得出關于的不等式,結合參考數據可求得結果;(2)分析可知從第個月開始到第個月償還的本金是首項為為首項
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甘肅省武威市2025屆八下英語期中統考模擬試題含答案
- 2025年云計算服務模式演變與行業應用場景拓展研究報告
- 2025年元宇宙社交平臺用戶粘性與活躍度提升策略報告
- 綠色物流發展趨勢與企業節能減排技術應用案例分析報告
- 咨詢工程師官方課件
- 2025年醫療美容行業激光美容技術發展及市場監督管理研究報告
- 周靖稅務師課件百度網盤
- 北京網約車題庫及答案
- 保育員初級考試試題2019及答案
- 工業廢氣催化燃燒技術環保設備維護與管理指南報告
- 2025聊城市輔警考試試卷真題
- 2025廣西專業技術人員公需科目培訓考試答案
- 2024年山東高中學業水平合格考試化學試卷真題(含答案詳解)
- 人工智能概論課件完整版
- 國開機考答案-工程力學(本)(閉卷)
- 國際學校六年級數學測(英文)
- C語言程序設計-實驗第一次上機實驗報告
- 標識標牌的制作與安裝
- 動力站柴油儲罐施工方案
- 注塑車間機臺日報表
- 空氣站質量控制措施之運行維護
評論
0/150
提交評論