




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省廣州市番禺區實驗中學2025屆高二數學第一學期期末學業水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.各項均為正數的等比數列的前項和為,若,,則()A. B.C. D.2.如圖在中,,,在內作射線與邊交于點,則使得的概率是()A. B.C. D.3.設為等差數列的前項和,若,,則公差的值為()A. B.2C.3 D.44.阿基米德(公元前287年~公元前212年)不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A. B.C. D.5.函數的導函數為,若已知圖象如圖,則下列說法正確的是()A.存在極大值點 B.在單調遞增C.一定有最小值 D.不等式一定有解6.已知數列的前n項和為,且對任意正整數n都有,若,則()A.2019 B.2020C.2021 D.20227.設平面向量,,其中m,,記“”為事件A,則事件A發生的概率為()A. B.C. D.8.甲乙兩名運動員在某項體能測試中的6次成績統計如表:甲9816151514乙7813151722分別表示甲乙兩名運動員這項測試成績的平均數,分別表示甲乙兩名運動員這項測試成績的標準差,則有()A., B.,C., D.,9.已知,,若直線上存在點P,滿足,則l的傾斜角的取值范圍是()A. B.C D.10.已知雙曲線右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A.2 B.C. D.11.已知過點A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實數a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)12.已知為等腰直角三角形的直角頂點,以為旋轉軸旋轉一周得到幾何體,是底面圓上的弦,為等邊三角形,則異面直線與所成角的余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一條直線過點,且與拋物線交于,兩點.若,則弦中點到直線的距離等于__________14.如圖,圖形中的圓是正方形的內切圓,點E,F,G,H為對角線與圓的交點,若向正方形內隨機投入一點,則該點落在陰影部分區域內的概率為_________15.命題“x≥1,x2-2x+4≥0”的否定為____________.16.已知是橢圓的兩個焦點,分別是該橢圓的左頂點和上頂點,點在線段上,則的最小值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,,,,平面.(1)在線段上是否存在一點使得平面?若存在,求出的位置;若不存在,請說明理由;(2)求四棱錐的體積.18.(12分)已知點,圓(1)若過點的直線與圓相切,求直線的方程;(2)若直線與圓相交于A,兩點,弦的長為,求的值19.(12分)某中學共有名學生,其中高一年級有名學生,為了解學生的睡眠情況,用分層抽樣的方法,在三個年級中抽取了名學生,依據每名學生的睡眠時間(單位:小時),繪制出了如圖所示的頻率分布直方圖.(1)求樣本中高一年級學生的人數及圖中的值;(2)估計樣本數據的中位數(保留兩位小數);(3)估計全校睡眠時間超過個小時的學生人數.20.(12分)在四棱錐中,平面,,,,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求直線與平面所成角的正弦值.21.(12分)已知等差數列滿足,.(1)求的通項公式;(2)設,求數列的前項和.22.(10分)已知橢圓:的左、右焦點分別為,,點E在橢圓C上,且,,.(1)求橢圓C的方程:(2)直線l過點,交橢圓于點A,B,且點P恰為線段AB的中點,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據等比數列性質可知,,,成等比數列,由等比中項特點可構造方程求得,由等比數列通項公式可求得,進而得到結果.【詳解】由等比數列的性質可得:,,,成等比數列,則,即,解得:,,,解得:.故選:D.2、C【解析】由題意可得,根據三角形中“大邊對大角,小邊對小角”的性質,將轉化為求的概率,又因為,,從而可得的概率【詳解】解:在中,,,所以,即,要使得,則,又因為,,則的概率是故選:C【點睛】本題考查幾何概型及其計算方法的知識,屬于基礎題3、C【解析】根據等差數列前項和公式進行求解即可.【詳解】,故選:C4、C【解析】由題意,設出橢圓的標準方程為,然后根據橢圓的離心率以及橢圓面積列出關于的方程組,求解方程組即可得答案【詳解】由題意,設橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.5、C【解析】根據圖象可得的符號,從而可得的單調區間,再對選項進行逐一分析判斷正誤得出答案.【詳解】由所給的圖象,可得當時,,當時,,當時,,當時,,可得在遞減,遞增;在遞減,在遞增,B錯誤,且知,所以存在極小值和,無極大值,A錯誤,同時無論是否存在,可得出一定有最小值,但是最小值不一定為負數,故C正確,D錯誤.故選:C.6、C【解析】先令代入中,求得,再根據遞推式得到,將與已知相減,可判斷數列是等比數列,進而確定,求得答案.【詳解】因為,令,則,又,故,即,故數列是等比數列,則,所以,所以,故選:C.7、D【解析】由向量的數量積公式結合古典概型概率公式得出事件A發生的概率.【詳解】由題意可知,即,因為所有的基本事件共有種,其中滿足的為,,只有1種,所以事件A發生的概率為.故選:D8、B【解析】根據給定統計表計算、,再比較、大小判斷作答.【詳解】依題意,,,,,所以,.故選:B9、A【解析】根據題意,求得直線恒過的定點,數形結合只需求得線段與直線有交點時的斜率,結合斜率和傾斜角的關系即可求得結果.【詳解】對直線,變形為,故其恒過定點,若直線存在點P,滿足,只需直線與線段有交點即可.數形結合可知,當直線過點時,其斜率取得最大值,此時,對應傾斜角;當直線過點時,其斜率取得最小值,此時,對應傾斜角為.根據斜率和傾斜角的關系,要滿足題意,直線的傾斜角的范圍為:.故選:A.10、B【解析】,得出到漸近線的距離為,由此可得的關系,從而求得離心率【詳解】因為,而,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡得故選:B11、A【解析】設出切點,對函數求導得到切點處的斜率,由點斜式得到切線方程,化簡為,整理得到方程有兩個解即可,解出不等式即可.【詳解】設切點為,,,則切線方程為:,切線過點代入得:,,即方程有兩個解,則有或.故答案為:A.【點睛】這個題目考查了函數的導函數的求法,以及過某一點的切線方程的求法,其中應用到導數的幾何意義,一般過某一點求切線方程的步驟為:一:設切點,求導并且表示在切點處的斜率;二:根據點斜式寫切點處的切線方程;三:將所過的點代入切線方程,求出切點坐標;四:將切點代入切線方程,得到具體的表達式.12、B【解析】設,過點作的平行線,與平行的半徑交于點,找出異面直線與所成角,然后通過解三角形可得出所求角的余弦值.【詳解】設,過點作的平行線,與平行的半徑交于點,則,,所以為異面直線與所成的角,在三角形中,,,所以.故選:B.【點睛】本題考查異面直線所成角余弦值的計算,一般通過平移直線的方法找到異面直線所成的角,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離【詳解】解:如圖,拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于故答案為:14、【解析】利用幾何概型概率計算公式,計算得所求概率.【詳解】設正方形的邊長為2,則陰影部分的面積為,故若向正方形內隨機投入一點,則該點落在陰影部分區域內概率為故答案為:.15、【解析】根據還有一個量詞的命題的否定的方法解答即可.【詳解】命題“x≥1,x2-2x+4≥0”的否定為“”.故答案為:.16、【解析】由題可設,則,然后利用數量積坐標表示及二次函數的性質即得.【詳解】由題可得,,設,因為點P在線段AB上,所以,∴,∴當時,的最小值為.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)存在,為的中點,證明見解析;(2).【解析】(1)取的中點,的中點,連接,,,證明,由線面平行的判定定理即可求證;(2)先證明平面面,過點作于點,即可證明面,在中,利用面積公式求出即為四棱錐的高,再由棱錐的體積公式即可求解.【詳解】(1)線段上存在點使得平面,為的中點.證明如下:如圖取的中點,的中點,連接,,,因為,分別為,的中點,所以且因為且,所以,且,所以四邊形為平行四邊形,可得,因為面,面,所以平面;(2)過點作于點,因為平面,面,所以平面面,因為,面,平面面,所以面,因為,,所以,,所以,即,所以,即為四棱錐的高,所以.18、(1)或;(2)【解析】(1)分直線斜率存在和不存在兩種情況分析,當當過點的直線存在斜率時,設方程為,利用圓心到直線的距離等于半徑求得k,即可得出答案;(2)求出圓心到直線的距離,再根據圓的弦長公式即可得出答案.【詳解】解:(1)由題意知圓心的坐標為,半徑,當過點的直線斜率不存在時,方程為,由圓心到直線的距離知,直線與圓相切,當過點的直線存在斜率時,設方程為,即由題意知,解得,直線的方程為故過點的圓的切線方程為或(2)圓心到直線的距離為,,解得19、(1)樣本中高一年級學生的人數為,;(2);(3)【解析】(1)利用分層抽樣可求得樣本中高一年級學生的人數,利用頻率直方圖中所有矩形的面積之和為可求得的值;(2)利用中位數左邊的矩形面積之和為可求得中位數的值;(3)利用頻率分布直方圖可計算出全校睡眠時間超過個小時的學生人數.【小問1詳解】解:樣本中高一年級學生的人數為.,解得.【小問2詳解】解:設中位數為,前兩個矩形的面積之和為,前三個矩形的面積之和為,所以,則,得,故樣本數據的中位數約為.【小問3詳解】解:由圖可知,樣本數據落在的頻率為,故全校睡眠時間超過個小時的學生人數約為.20、(1)證明見解析;(2)證明見解析;(3).【解析】(1)根據給定條件證得即可推理作答.(2)由已知條件,以點A作原點建立空間直角坐標系,借助空間位置關系的向量證明即可作答.(3)利用(2)中信息,借助空間向量求直線與平面所成角的正弦值.【小問1詳解】在四棱錐中,因分別是的中點,則,因平面,平面,所以平面.【小問2詳解】在四棱錐中,平面,,以點A為原點,射線AB,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,而且,則,,設平面的法向量,由,令,得,又,因此有,所以平面.【小問3詳解】由(2)知,,令直線與平面所成角為,則有,所以直線與平面所成角的正弦值.21、(1);(2).【解析】(1)設等差數列的公差為,根據題意可得出關于、的方程組,解出這兩個量的值,可得出數列的通項公式;(2)求得,利用裂項法可求得.【小問1詳解】解:設等差數列的公差為,則,可得,由可得,即,解得,,故.【小問2詳解】解:,因此,.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教育技術中的創新實踐AR技術的應用與探索
- 兒童成長過程中的情緒調節與行為引導策略研究
- 2025年山西省晉中市祁縣2024-2025學年三模化學試題
- 教育機器人-實現教育資源均衡分配的未來之路
- 教育心理學在改善教學環境中的作用
- 教育科技助力幼兒教育商業化運營策略探討
- 混合學習模式下的教育技術應用案例
- 健身餐盒訂閱企業制定與實施新質生產力項目商業計劃書
- 購物中心特色水果店行業深度調研及發展項目商業計劃書
- 聽力障礙語言訓練行業深度調研及發展項目商業計劃書
- 2025急性心梗診療指南
- 【閔行區人民法院】上海市閔行區勞動人事爭議調解仲裁與審判白皮書(2023-2024年)
- 智能藥柜管理系統行業深度調研及發展戰略咨詢報告
- 大數據導論題庫習題試卷及答案
- 住院費用清單2
- 2025水發集團限公司招聘若干人(山東)易考易錯模擬試題(共500題)試卷后附參考答案
- 《汽車電氣設備構造與維修》配套教案:模塊四-項目1-啟動機的認知
- CSCO小細胞肺癌課件
- 安徽省合肥一中2024-2025學年高一(上)期末語文試卷(含答案)
- 《結腸癌護理查房》課件
- 2025年湖南省中職《思想政治》普測核心考點試題庫500題(重點)
評論
0/150
提交評論