甘肅省慶陽六中2025屆高二數學第一學期期末檢測模擬試題含解析_第1頁
甘肅省慶陽六中2025屆高二數學第一學期期末檢測模擬試題含解析_第2頁
甘肅省慶陽六中2025屆高二數學第一學期期末檢測模擬試題含解析_第3頁
甘肅省慶陽六中2025屆高二數學第一學期期末檢測模擬試題含解析_第4頁
甘肅省慶陽六中2025屆高二數學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省慶陽六中2025屆高二數學第一學期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設實系數一元二次方程在復數集C內的根為、,則由,可得.類比上述方法:設實系數一元三次方程在復數集C內的根為,則的值為A.﹣2 B.0C.2 D.42.已知數列為等差數列,若,則()A.1 B.2C.3 D.43.已知為偶函數,且,則___________.4.若的解集是,則等于()A.-14 B.-6C.6 D.145.如圖,在三棱柱中,E,F分別是BC,中點,,則()A.B.C.D.6.函數的導函數為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.7.阿基米德曾說過:“給我一個支點,我就能撬動地球”.他在做數學研究時,有一個有趣的問題:一個邊長為2的正方形內部挖了一個內切圓,現在以該內切圓的圓心且平行于正方形的一邊的直線為軸旋轉一周形成幾何體,則該旋轉體的體積為()A. B.C. D.8.命題“若,則”的逆否命題是()A.若,則 B.若,則C.若,則 D.若,則9.設為等差數列的前項和,,,則A.-6 B.-4C.-2 D.210.某中學初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校男教師的人數為()A.167 B.137C.123 D.11311.已知數列{an}的前n項和為Sn,滿足a1=1,-=1,則an=()A.2n-1 B.nC.2n-1 D.2n-112.已知函數的圖象如圖所示,則不等式的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設拋物線C:的焦點為F,準線l與x軸的交點為M,P是C上一點,若|PF|=5,則|PM|=__.14.已知直線與圓交于A,B兩點,過A,B分別做l的垂線與x軸交于C,D兩點,若|AB|=4,則|CD|=_____________.15.已知某次數學期末試卷中有8道4選1的單選題16.雙曲線的離心率為__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數的等差數列滿足,且,,構成等比數列的前三項.(1)求數列,的通項公式;(2)設,求數列的前項和.18.(12分)(1)敘述正弦定理;(2)在△中,應用正弦定理判斷“”是“”成立的什么條件,并加以證明.19.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.20.(12分)如圖所示,圓錐的高,底面圓的半徑為,延長直徑到點,使得,分別過點、作底面圓的切線,兩切線相交于點,點是切線與圓的切點(1)證明:平面;(2)若平面與平面所成銳二面角的余弦值為,求該圓錐的體積21.(12分)設等比數列的前項和為,且()(1)求數列的通項公式;(2)在與之間插入個實數,使這個數依次組成公差為的等差數列,設數列的前項和為,求證:22.(10分)等比數列中,,(1)求的通項公式;(2)記為的前n項和.若,求m的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】用類比推理得到,再用待定系數法得到,,再根據求解.【詳解】,由對應系數相等得:,.故選:A.【點睛】本題主要考查合情推理以及待定系數法,還考查了轉化化歸的思想和邏輯推理的能力,屬于中檔題.2、D【解析】利用等差數列下標和的性質求值即可.【詳解】由等差數列下標和性質知:.故選:D3、8【解析】由已知條件中的偶函數即可計算出結果,【詳解】為偶函數,且,.故答案為:84、A【解析】由一元二次不等式的解集,結合根與系數關系求參數a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.5、D【解析】根據空間向量線性運算的幾何意義進行求解即可.【詳解】,故選:D6、C【解析】構造函數,利用導數分析函數的單調性,將所求不等式變形為,結合函數的單調性即可得解.【詳解】對任意,都有成立,即令,則,所以函數在上單調遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.7、B【解析】根據題意,結合圓柱和球的體積公式進行求解即可.【詳解】由題意可知:該旋轉體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B8、C【解析】根據逆否命題的定義寫出逆否命題即得【詳解】解:以否定的結論作條件、否定的條件作結論得出的命題為原命題的逆否命題,即“若,則”的逆否命題是“若,則”故選:C9、A【解析】由已知得解得故選A考點:等差數列的通項公式和前項和公式10、C【解析】根據圖形分別求出初中部和高中部男教師的人數,最后相加即可.【詳解】初中部男教師的人數為110×(170%)=33;高中部男教師的人數為150×60%=90,∴該校男教師的人數為33+90=123.故選:C.11、A【解析】由題可得,利用與的關系即求.【詳解】∵a1=1,-=1,∴是以1為首項,以1為公差的等差數列,∴,即,∴當時,,當時,也適合上式,所以故選:A.12、D【解析】原不等式等價于,根據的圖象判斷函數的單調性,可得和的解集,再分情況或解不等式即可求解.【詳解】由函數的圖象可知:在和上單調遞增,在上單調遞減,所以當時,;當時,;由可得,所以或,即或,解得:或,所以原不等式的解集為:,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據拋物線的性質及拋物線方程可求坐標,進而得解.【詳解】由拋物線的方程可得焦點,準線,由題意可得,設,有拋物線的性質可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.14、【解析】先求出圓心和半徑,由于半徑為2,弦|AB|=4,所以可知直線過圓心,從而得,求出,得到直線方程且傾斜角為135°,進而可求出|CD|【詳解】圓,圓心(1,2),半徑r=2,∵|AB|=4,∴直線過圓心(1,2),∴,∴,∴直線,傾斜角為135°,∵過A,B分別做l的垂線與x軸交于C,D兩點,∴.故答案為:4【點睛】此題考查直線與圓的位置關系,考查兩直線的位置關系,考查轉化思想和計算能力,屬于基礎題15、##0.84375【解析】合理設出事件,利用全概率公式進行求解.【詳解】設小王從這8題中任選1題,且作對為事件A,選到能完整做對的5道題為事件B,選到有思路的兩道題為事件C,選到完全沒有思路為事件D,則,,,由全概率公式可得:PA=PB故答案為:16、【解析】∵雙曲線的方程為∴,∴∴故答案為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,;(2).【解析】(1)由等差中項的性質可求出,又,,構成等比數列,設出公差,代入可求出,從而求出數列的通項公式,代入可求出,的值,從而求出數列的通項公式;(2)將通項公式代入,運用裂項相消的方法可求出前項和.【詳解】解析:(1)因為等差數列中,,所以,設數列公差為,因為,,構成等比數列,則,即,解得或(舍)即,又等比數列中,,所以,;(2)∵,∴,∴【點睛】易錯點睛:(1)裂項相消時一定要注意分母的差,一般情況下分母的差是幾,則要在裂項前面乘以幾分之一;(2)裂項相消時要注意保留的項數.18、(1)正弦定理見解析;(2)充要條件,證明見解析【解析】(1)用語言描述正弦定理,并用公式表達正弦定理(2)利用“大角對大邊”的性質,并根據正弦定理進行邊角互化即可【詳解】(1)正弦定理:在任意一個三角形中,各邊和它所對角的正弦值之比相等且等于這個三角形外接圓的直徑,即.(2)是充要條件.證明如下:充分性:又故有:必要性:又綜上,是的充要條件19、(1)(2)【解析】(1)建立空間直角坐標系,用點到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點為坐標原點,分別為軸,軸,軸建立如圖所示的空間直角坐標系,D(3,6,0),A(0,6,0)設平面的一個法向量所以n?PD令,可得記點到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設二面角的平面角為由圖可知,20、(1)證明見解析;(2).【解析】(1)由線面垂直、切線的性質可得、,再根據線面垂直的判定即可證結論.(2)若,構建為原點,、、為x、y、z軸的空間直角坐標系,求面、面的法向量,利用空間向量夾角的坐標表示及其對應的余弦值求R,最后由圓錐的體積公式求體積.【小問1詳解】由題設,底面圓,又是切線與圓的切點,∴底面圓,則,且,而,∴平面.【小問2詳解】由題設,若,可構建為原點,、、為x、y、z軸的空間直角坐標系,又,可得,∴,,,有,,若是面的一個法向量,則,令,則,又面的一個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論