




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市東城五中高二上數學期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知i是虛數單位,復數z=,則復數z的虛部為()A.i B.-iC.1 D.-12.的展開式中,常數項為()A. B.C. D.3.已知雙曲線右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A.2 B.C. D.4.在等比數列中,,則等于()A. B.C. D.5.已知拋物線的焦點坐標是,則拋物線的標準方程為A. B.C. D.6.已知直線與直線垂直,則a=()A.3 B.1或﹣3C.﹣1 D.3或﹣17.已知命題:△中,若,則;命題:函數,,則的最大值為.則下列命題是真命題的是()A. B.C. D.8.已知等差數列滿足,則其前10項之和為()A.140 B.280C.68 D.569.已知數列的前項和為,滿足,,,則()A. B.C.,,成等差數列 D.,,成等比數列10.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.11.已知雙曲線(,)的左、右焦點分別為,,點A的坐標為,點P是雙曲線在第二象限的部分上一點,且,點Q是線段的中點,且,Q關于直線PA對稱,則雙曲線的離心率為()A.3 B.2C. D.12.準線方程為的拋物線的標準方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在五面體中,//,,,四邊形為平行四邊形,平面,,則直線到平面距離為_________14.將連續的正整數填入n行n列的方陣中,使得每行、每列、每條對角線上的數之和相等,可得到n階幻方.記n階幻方每條對角線上的數之和為,如圖:,那么的值為___________.15.曲線在點處的切線與坐標軸圍成的三角形面積為__________.16.某教師組織本班學生開展課外實地測量活動,如圖是要測山高.現選擇點A和另一座山頂點C作為測量觀測點,從A測得點M的仰角,點C的仰角,測得,,已知另一座山高米,則山高_______米.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)求的單調區間;(2)若,求的最大值與最小值18.(12分)已知橢圓經過點,橢圓E的一個焦點為.(1)求橢圓E的方程;(2)若直線l過點且與橢圓E交于兩點.求的最大值.19.(12分)如圖,四棱錐中,底面為矩形,底面,,點是棱的中點(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值20.(12分)2020年10月,中共中央辦公廳、國務院辦公廳印發了《關于全面加強和改進新時代學校體育工作的意見》,某地積極開展中小學健康促進行動,發揮以體育智、以體育心功能,決定在2021年體育中考中再增加一定的分數,規定:考生須參加立定跳遠、擲實心球、一分鐘跳繩三項測試,其中一分鐘跳繩滿分20分,某校為掌握九年級學生一分鐘跳繩情況,隨機抽取了100名學生測試,其一分一分鐘跳繩個數成績(分)1617181920頻率(1)若每分鐘跳繩成績不足18分,則認為該學生跳繩成績不及格,求在進行測試的100名學生中跳繩成績不及格的人數為多少?(2)該學校決定由這次跳繩測試一分鐘跳繩個數在205以上(包括205)的學生組成“小小教練員"團隊,小明和小華是該團隊的成員,現學校要從該團隊中選派2名同學參加某跳繩比賽,求小明和小華至少有一人被選派的概率21.(12分)已知橢圓的左,右頂點分別是,,且,是橢圓上異于,的不同的兩點(1)若,證明:直線必過坐標原點;(2)設點是以為直徑的圓和以為直徑的圓的另一個交點,記線段的中點為,若,求動點的軌跡方程22.(10分)已知是等差數列,其n前項和為,已知(1)求數列的通項公式:(2)設,求數列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先通過復數的除法運算求出z,進而求出虛部.【詳解】由題意,,則z的虛部為1.故選:C.2、A【解析】寫出展開式通項,令的指數為零,求出參數的值,代入通項計算即可得解.【詳解】的展開式通項為,令,可得,因此,展開式中常數項為.故選:A.3、B【解析】,得出到漸近線的距離為,由此可得的關系,從而求得離心率【詳解】因為,而,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡得故選:B4、C【解析】根據,然后與,可得,最后簡單計算,可得結果.【詳解】在等比數列中,由所以,又,所以所以故選:C【點睛】本題考查等比數列的性質,重在計算,當,在等差數列中有,在等比數列中,靈活應用,屬基礎題.5、D【解析】根據拋物線的焦點坐標得到2p=4,進而得到方程.【詳解】拋物線的焦點坐標是,即p=2,2p=4,故得到方程為.故答案為D.【點睛】這個題目考查了拋物線的標準方程的求法,題目較為簡單.6、D【解析】根據,得出關于的方程,即可求解實數的值.【詳解】直線與直線垂直,所以,解得或.故選:D.7、A【解析】由三角形內角及正弦函數的性質判斷、的真假,應用換元法令,結合對勾函數的性質確定的值域即知、的真假,根據各選項復合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.8、A【解析】根據等差數列的性質,可得,結合等差數列的求和公式,即可求解.【詳解】由題意,等差數列滿足,根據等差數列的性質,可得,所以數列的前10項和為.故選:A.9、C【解析】寫出數列前幾項,觀察規律,找到數列變化的周期,再依次去判斷各項的說法即可解決.【詳解】數列中,,,,則此數列為1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即數列的各項是周期為6數值循環重復的一列數,選項A:,,則.判斷錯誤;選項B:由,可知當時,.判斷錯誤;選項C:,則,即,,成等差數列.判斷正確;選項D:,,則,,即,,不能構成等比數列.判斷錯誤.故選:C10、B【解析】利用空間向量加減、數乘的幾何意義,結合三棱錐用表示出即可.【詳解】由題設,,,,.故選:B11、C【解析】由角平分線的性質可得,結合已知條件即可求雙曲線的離心率.【詳解】由題設,易知:,由知:,即,整理得:.故選:C12、D【解析】的準線方程為.【詳解】的準線方程為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用等價轉化的思想轉化為點到面的距離,作,利用線面垂直的判定定理證明平面,然后計算使用等面積法,可得結果.【詳解】作如圖由//,平面,平面所以//平面所以直線到平面距離等價于點到平面距離又平面,平面所以,又,則平面,,所以平面平面,所以又平面,所以平面所以點到平面距離為由,所以又,所以在中,又故答案為:【點睛】本題考查線面垂直的綜合應用以及等面積法求高,重點在于使用等價轉換的思想,考驗理解能力,分析問題的能力,屬中檔題.14、34【解析】根據每行數字之和相等,四行數字之和剛好等于1到16之和可得.【詳解】4階幻方中,4行數字之和,得.故答案為:3415、【解析】運用導數的幾何意義進行求解即可.【詳解】由,所以,而,所以切線方程為:,令,得,令,得,所以三角形的面積為:,故答案為:16、【解析】利用正弦定理可求出各個三角形的邊長,進而求出山高.【詳解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調遞增區間是和,單調遞減是;(2)函數的最大值是,函數的最小值是.【解析】(1)利用導數和函數單調性關系,求函數的單調區間;(2)利用函數的單調性,列表求函數的最值.【小問1詳解】,當,解得:或,所以函數的單調遞增區間是和,當,解得:,所以函數的單調遞減區間是,所以函數的單調遞增區間是和,單調遞減是;【小問2詳解】由(1)可得下表4單調遞增單調遞減單調遞增所以函數的最大值是,函數的最小值是18、(1)(2)【解析】(1)設橢圓的左,右焦點分別為,.利用橢圓的定義求出,然后求解,得到橢圓方程;(2)當直線的斜率存在時,設,,,,,聯立直線與橢圓方程,利用韋達定理以及弦長公式得到弦長的表達式,再通過換元利用二次函數的性質求解最值即可【小問1詳解】依題意,設橢圓的左,右焦點分別為,則,,,,橢圓的方程為【小問2詳解】當直線的斜率存在時,設,,,,由得由得由,得設,則,當直線的斜率不存在時,,的最大值為19、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問1詳解】解:因為平面,四邊形為矩形,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,設,則、、、、、,,,,,所以,,,所以,,,又因為,因此,平面.所以,平面的一個法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問2詳解】解:若,則、,設平面的法向量為,,,則,取,可得,設平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.20、(1)14人;(2).【解析】(1)根據頻率直方表區間成績及其對應的頻率,即可求每分鐘跳繩成績不足18分的人數.(2)由表格數據求出一分鐘跳繩個數在205以上(包括205)的學生共6人,列舉出六人中選兩人參加比賽的所有情況、小明和小華至少有一個被選派的情況,由古典概型的概率求法即可得小明和小華至少有一人被選派的概率.【詳解】(1)由表可知,每分鐘跳繩成績不足18分,即為成績是16分或17分,在進行測試的100名學生中跳繩成績不及格人數為:人)(2)一分鐘跳繩個數在205以上(包括205)的學生頻率為,其人數為:(人),記小明為,小華為,其余四人為,則在這六人中選兩人參加比賽的所有情況為:,共15種,其中小明和小華至少有一個被選派的情況有:,共9種,小明和小華至少有一人被選派的概率為:.21、(1)證明見解析;(2).【解析】(1)設,首先證明,從而可得到,即得到;進而可得到四邊形為平行四邊形;再根據為的中點,即可證明直線必過坐標原點(2)設出直線的方程,與橢圓方程聯立,消元,寫韋達;根據條件可求出直線MN過定點,從而可得到過定點,進而可得到點在以為直徑的圓上運動,從而可求出動點的軌跡方程【小問1詳解】設,則,即因為,,所以因為,所以,所以.同理可證.因為,,所以四邊形為平行四邊形,因為為的中點,所以直線必過坐標原點【小問2詳解】當直線的斜率存在時,設直線的方程為,,聯立,整理得,則,,.因為,所以,因為,解得或.當時,直線的方程為過點A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點.當直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中政治議題中心教學法在提高學生信息獲取與處理能力方面的應用研究論文
- 初中語文名著閱讀教學中的閱讀策略與閱讀習慣養成研究論文
- 校園文化品牌傳播策略對小學生創新能力培養的影響研究論文
- 初中生科技展覽學習體驗與科學探究能力提升研究論文
- 基于問題導向的高中化學實驗創新能力培養研究論文
- 藝考生課程管理制度
- 小學語文《樹和喜鵲》課件
- 設備維修個人工作計劃
- 設備開箱檢驗記錄
- 2025年山東省濟寧市中考歷史模擬試卷(含答案)
- 基于AI的年度營銷策略創新
- 校園通創業計劃書
- 2025陜煤集團榆林化學有限責任公司招聘(300人)筆試參考題庫附帶答案詳解
- 臨床重癥患者坐式八段錦要點、適應人群、效果及注意事項
- 2024年四川省內江市資中縣小升初數學試卷
- 地理-2025年江西省中考第一次模擬考試(全解全析)
- 開轟趴館的創業計劃書
- 《基礎護理學(第七版)》考前強化模擬練習試題庫500題(含答案)
- 【MOOC】《算法設計與分析》(東北大學) 中國大學慕課答案
- 病案管理系統用戶使用手冊
- 國家開放大學《應用寫作(漢語)》形考任務1-6答案
評論
0/150
提交評論