2025屆吉林省通化市第十四中學數學高二上期末復習檢測模擬試題含解析_第1頁
2025屆吉林省通化市第十四中學數學高二上期末復習檢測模擬試題含解析_第2頁
2025屆吉林省通化市第十四中學數學高二上期末復習檢測模擬試題含解析_第3頁
2025屆吉林省通化市第十四中學數學高二上期末復習檢測模擬試題含解析_第4頁
2025屆吉林省通化市第十四中學數學高二上期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆吉林省通化市第十四中學數學高二上期末復習檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點(1,0)且與直線x-2y-2=0平行的直線方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=02.某商場開通三種平臺銷售商品,五一期間這三種平臺的數據如圖1所示.該商場為了解消費者對各平臺銷售方式的滿意程度,用分層抽樣的方法抽取了6%的顧客進行滿意度調查,得到的數據如圖2所示.下列說法正確的是()A.樣本中對平臺一滿意的消費者人數約700B.總體中對平臺二滿意的消費者人數為18C.樣本中對平臺一和平臺二滿意的消費者總人數為60D.若樣本中對平臺三滿意消費者人數為120,則3.直線:和圓的位置關系是()A.相離 B.相切或相交C.相交 D.相切4.在平面直角坐標系中,已知點,,,,直線AP,BP相交于點P,且它們斜率之積是.當時,的最小值為()A. B.C. D.5.焦點為的拋物線標準方程是()A. B.C. D.6.設平面向量,,其中m,,記“”為事件A,則事件A發生的概率為()A. B.C. D.7.已知數列的首項為,且,若,則的取值范圍是()A. B.C. D.8.設是虛數單位,則復數對應的點在平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知線段AB的端點B在直線l:y=-x+5上,端點A在圓C1:上運動,線段AB的中點M的軌跡為曲線C2,若曲線C2與圓C1有兩個公共點,則點B的橫坐標的取值范圍是()A.(-1,0) B.(1,4)C.(0,6) D.(-1,5)10.已知曲線,則曲線W上的點到原點距離的最小值是()A. B.C. D.11.某中學初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校男教師的人數為()A.167 B.137C.123 D.11312.已知向量,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數列滿足,請寫出一個符合條件的通項公式______14.圓錐曲線的焦點在軸上,離心率為,則實數的值是__________.15.拋物線的準線方程為_____16.過圓內的點作一條直線,使它被該圓截得的線段最短,則直線的方程是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列中,,且(1)求證:數列是等差數列,并求出;(2)數列前項和為,求18.(12分)某公園有一形狀可抽象為圓柱的標志性景觀建筑物,該建筑物底面直徑為8米,在其南面有一條東西走向的觀景直道,建筑物的東西兩側有與觀景直道平行的兩段輔道,觀景直道與輔道距離10米.在建筑物底面中心O的東北方向米的點A處,有一全景攝像頭,其安裝高度低于建筑物的高度(1)在西輔道上距離建筑物1米處的游客,是否在該攝像頭的監控范圍內?(2)求觀景直道不在該攝像頭的監控范圍內的長度19.(12分)在中,內角A、B、C的對邊分別為a、b、c,滿足(1)求A的大小;(2)若,的面積為,求的周長20.(12分)某市為加強市民對新冠肺炎的知識了解,面向全市征召義務宣傳志愿者.現從符合條件的志愿者中隨機抽取100名按年齡分組:第1組[20,25),共5人,第2組[25,30),共35人,第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.(1)求a的值;(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場宣傳活動,且該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經驗,求第3組至少有-名志愿者被抽中的概率.21.(12分)如圖所示,在直三棱柱中,是等腰直角三角形,(1)證明:;(2)若點E是棱的中點,求平面與平面所成銳二面角的余弦值22.(10分)已知圓C:x2+y2+2ax﹣3=0,且圓C上存在兩點關于直線3x﹣2y﹣3=0對稱.(1)求圓C的半徑r;(2)若直線l過點A(2,),且與圓C交于MN,兩點,|MN|=2,求直線l的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設出直線方程,利用待定系數法得到結果.【詳解】設與直線平行的直線方程為,將點代入直線方程可得,解得則所求直線方程為.故A正確【點睛】本題主要考查兩直線的平行問題,屬容易題.兩直線平行傾斜角相等,所以斜率相等或均不存在.所以與直線平行的直線方程可設為2、C【解析】根據扇形圖和頻率分布直方圖判斷.【詳解】對于A:樣本中對平臺一滿意的人數為,故選項A錯誤;對于B:總體中對平臺二滿意的人數約為,故選項B錯誤;對于C:樣本中對平臺一和平臺二滿意的總人數為:,故選項C正確:對于D:對平臺三的滿意率為,所以,故選項D錯誤故選:C3、C【解析】直線l:y﹣1=k(x﹣1)恒過點(1,1),且點(1,1)在圓上,直線的斜率存在,故可知直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關系【詳解】圓C:x2+y2﹣2y=0可化為x2+(y﹣1)2=1∴圓心為(0,1),半徑為1∵直線l:y﹣1=k(x﹣1)恒過點(1,1),且點(1,1)在圓上且直線的斜率存在∴直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關系是相交,故選C【點睛】本題考查的重點是直線與圓的位置關系,解題的關鍵是確定直線恒過定點,此題易誤選B,忽視直線的斜率存在4、A【解析】設出點坐標,求得、所在直線的斜率,由斜率之積是列式整理即可得到點的軌跡方程,設,根據雙曲線的定義,從而求出的最小值;【詳解】解:設點坐標為,則直線的斜率;直線的斜率由已知有,化簡得點的軌跡方程為又,所以點的軌跡方程為,即點的軌跡為以、為頂點的雙曲線的左支(除點),因為,設,由雙曲線的定義可知,所以,當且僅當、、三點共線時取得最小值,因為,所以,所以,即的最小值為;故選:A5、D【解析】設拋物線的方程為,根據題意,得到,即可求解.【詳解】由題意,設拋物線的方程為,因為拋物線的焦點為,可得,解得,所以拋物線的方程為.故選:D.6、D【解析】由向量的數量積公式結合古典概型概率公式得出事件A發生的概率.【詳解】由題意可知,即,因為所有的基本事件共有種,其中滿足的為,,只有1種,所以事件A發生的概率為.故選:D7、C【解析】由題意,得到,利用疊加法求得,結合由,轉化為恒成立,分,和三種情況討論,即可求解.【詳解】因為,可得,所以,所以,各式相加可得,所以,由,可得恒成立,整理得恒成立,當時,,不等式可化為恒成立,所以;當時,,不等式可化為恒成立;當時,,不等式可化為恒成立,所以,綜上可得,實數的取值范圍是.故選:C.8、A【解析】計算出復數即可得出結果.【詳解】由于,對應的點的坐標為,在第一象限,故選:A.9、D【解析】設,AB的中點,由中點坐標公式求得,代入圓C1:得點點M的軌跡方程,再根據兩圓的位置關系建立不等式,代入,求解即可得點B的橫坐標的取值范圍.【詳解】解:設,AB的中點,則,所以,又因為端點A在圓C1:上運動,所以,即,因為曲線C2與圓C1有兩個公共點,所以,又因B在直線l:y=-x+5上,所以,所以,整理得,即,解得,所以點B的橫坐標的取值范圍是,故選:D.10、A【解析】化簡方程,得到,求出的范圍,作出曲線的圖形,通過圖象觀察,即可得到原點距離的最小值詳解】解:即為,兩邊平方,可得,即有,則作出曲線的圖形,如下:則點與點或的距離最小,且為故選:A11、C【解析】根據圖形分別求出初中部和高中部男教師的人數,最后相加即可.【詳解】初中部男教師的人數為110×(170%)=33;高中部男教師的人數為150×60%=90,∴該校男教師的人數為33+90=123.故選:C.12、A【解析】根據得出,根據充分必要條件的定義可判斷.【詳解】解:∵,向量,,∴,即,根據充分必要條件的定義可判斷:“”是“”的充分不必要條件,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、3(答案不唯一)【解析】由已知條件結合等差數列的性質可得,則,從而可寫出數列的一個通項公式【詳解】因為是等差數列,且,所以,當公差為0時,;公差為1時,;…故答案為:3(答案為唯一)14、【解析】根據圓錐曲線焦點在軸上且離心率小于1,確定a,b求解即可.【詳解】因為圓錐曲線的焦點在軸上,離心率為,所以曲線為橢圓,且,所以,解得,故答案為:15、【解析】本題利用拋物線的標準方程得出拋物線的準線方程【詳解】由拋物線方程可知,拋物線的準線方程為:故答案為【點睛】本題考查拋物線的相關性質,主要考查拋物線的簡單性質的應用,考查拋物線的準線的確定,是基礎題16、【解析】由已知得圓的圓心為,所以當直線時,被該圓截得的線段最短,可求得直線的方程.【詳解】解:由得,所以圓的圓心為,所以當直線時,被該圓截得的線段最短,所以,解得,所以直線l的方程為,即,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,(2)【解析】(1)利用等差數列的定義可證是等差數列,利用等差數列的通項公式可求.(2)利用錯位相減法可求.【小問1詳解】因為,是以為首項,為公差的等差數列,,.【小問2詳解】,,,.18、(1)不在(2)17.5米【解析】(1)以O為原點,正東方向為x軸正方向建立如圖所示的直角坐標系,求出直線AB方程,判斷直線AB與圓O的位置關系即可;(2)攝像頭監控不會被建筑物遮擋,只需求出過點A的直線l與圓O相切時的直線方程即可.【小問1詳解】以O為原點,正東方向為x軸正方向建立如圖所示的直角坐標系則,觀景直道所在直線的方程為依題意得:游客所在點為則直線AB的方程為,化簡得,所以圓心O到直線AB的距離,故直線AB與圓O相交,所以游客不在該攝像頭監控范圍內.【小問2詳解】由圖易知:過點A的直線l與圓O相切或相離時,攝像頭監控不會被建筑物遮擋,所以設直線l過A且恰與圓O相切,①若直線l垂直于x軸,則l不可能與圓O相切;②若直線l不垂直于x軸,設,整理得所以圓心O到直線l的距離為,解得或,所以直線l的方程為或,即或,設這兩條直線與交于D,E由,解得,由,解得,所以,觀景直道不在該攝像頭的監控范圍內的長度為17.5米.19、(1)(2)【解析】(1)通過正弦定理將邊化為角的關系,可得,進而可得結果;(2)由面積公式得,結合余弦定理得,進而得結果.【小問1詳解】∵∴由正弦定理,得∴∵,∴,故【小問2詳解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周長為20、(1)0.04;(2).【解析】(1)根據頻率的計算公式,結合概率之和為1,即可求得參數;(2)根據題意求得抽樣比以及第三組和第四組各抽取的人數,再列舉所有可能抽取的情況,找出滿足題意的情況,利用古典概型的概率計算公式即可求得結果.【小問1詳解】第一組頻率為,第二組的頻率為,則第一組與第二組的頻率之和為,又,故.【小問2詳解】第3組的人數為,第4組的人數為,第5組的人數為,因為第3,4,5組共有60名志愿者,所以利用分層抽樣的方法在60名志題者中抽收6名志愿者,每組抽取的人數分別為:第3組:;第4組:;第5組:.記第3組的3名志愿者為,第4組的2名志愿者為,則從5名志愿者中抽取2名志愿者有:,,共有10種其中第3組的3名志愿者至少有一名志愿者被抽中的有:,共9種.所以第3組至少有一名志愿者被抽中的概率為.21、(1)證明見解析(2)【解析】(1)根據線面垂直的判定定理證出平面,即可證得;(2)以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標系,根據二面角的向量公式即可求出【小問1詳解】如圖,連接,由已知可得四邊形是正方形,所以在直三棱柱中,平面平面,交線為,在中,可知,所以平面,于因為,所以平面,而平面,所以【小問2詳解】如圖所示,以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標系,則,于是設平面的法向量為,則,可取而平面的一個法向量為,所以故平面與平面所成銳二面角的余弦值為22、(1)r=2(2)x﹣2=0或x+﹣3=0【解析】(1)由已知根據對稱性可知直線m過

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論