




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
藏拉薩那曲第二高級中學2025屆高二上數學期末調研模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左右焦點分別為、,過作的一條漸近線的垂線,垂足為,若的面積為,則的漸近線方程為A. B.C. D.2.已知圓,圓,則兩圓的公切線的條數為()A.1 B.2C.3 D.43.丹麥數學家琴生(Jensen)是世紀對數學分析做出卓越貢獻的巨人,特別是在函數的凸凹性與不等式方面留下了很多寶貴的成果.設函數在上的導函數為,在上的導函數為,在上恒成立,則稱函數在上為“凹函數”.則下列函數在上是“凹函數”的是()A. B.C. D.4.已知數列是公差為等差數列,,則()A.1 B.3C.6 D.95.若方程表示焦點在軸上的雙曲線,則角所在象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限6.雙曲線的左、右焦點分別為、,點P在雙曲線右支上,,,則C的離心率為()A. B.2C. D.7.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.已知關于的不等式的解集為,則不等式的解集為()A.或 B.C.或 D.9.圓心在x軸上且過點的圓與y軸相切,則該圓的方程是()A. B.C. D.10.對于兩個平面、,“內有三個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知A為拋物線C:y2=2px(p>0)上一點,點A到C的焦點的距離為12,到y軸的距離為9,則p=()A.2 B.3C.6 D.912.“”是“直線與直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,已知雙曲線的左,右焦點分別為,,過且與圓相切的直線與雙曲線的一條漸近線相交于點(點在第一象限),若,則雙曲線的離心率___________.14.展開式中的系數是___________.15.拋物線的焦點坐標是______.16.若,且數列是嚴格遞增數列或嚴格遞減數列,則實數a取值范圍是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列的前n項和為,且(1)求證:數列為等比數列;(2)記,求數列的前n項和為18.(12分)設函數(1)若在處取得極值,求a的值;(2)若在上單調遞減,求a的取值范圍19.(12分)已知直線:,直線:(1)若,之間的距離為3,求c的值:(2)求直線截圓C:所得弦長20.(12分)中心在原點,焦點在x軸上的一橢圓與一雙曲線有共同的焦點F1,F2,且|F1F2|=,橢圓的長半軸長與雙曲線半實軸長之差為4,離心率之比為3∶7(1)求這兩曲線方程;(2)若P為這兩曲線的一個交點,求△F1PF2的面積21.(12分)在平面直角坐標系中,已知直線(t為參數).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)設點的直角坐標為,直線與曲線的交點為,求的值.22.(10分)(1)求焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程;(2)求經過點的拋物線的標準方程;
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求得,根據的面積列方程,由此求得,進而求得雙曲線的漸近線方程.【詳解】依題意,雙曲線的一條漸近線為,則,所以,所以,所以.所以雙曲線漸近線方程為.故選:D【點睛】本小題主要考查雙曲線漸近線的有關計算,屬于中檔題.2、B【解析】根據圓的方程,求得圓心距和兩圓的半徑之和,之差,判斷兩圓的位置關系求解.【詳解】因為圓,圓,所以,,所以,所以兩圓相交,所以兩圓的公切線的條數為2,故選:B3、B【解析】根據“凹函數”的定義逐項驗證即可解出【詳解】對A,,當時,,所以A錯誤;對B,,在上恒成立,所以B正確;對C,,,所以C錯誤;對D,,,因為,所以D錯誤故選:B4、D【解析】結合等差數列的通項公式求得.【詳解】設公差,.故選:D5、D【解析】根據題意得出的符號,進而得到的象限.【詳解】由題意,,所以在第四象限.故選:D.6、C【解析】由,所以為直角三角形,根據雙曲線的定義結合勾股定理可得答案.【詳解】由,所以為直角三角形.,根據雙曲線的定義可得所以,即,即,所以故選:C7、B【解析】求出的等價條件,結合充分條件和必要條件的定義判斷可得出結論.【詳解】,因“”“”且“”“”,因此,“”是“”的必要不充分條件.故選:B.8、A【解析】由一元二次不等式的解集可得且,確定a、b、c間的數量關系,再求的解集.【詳解】由題意知:且,得,從而可化為,等價于,解得或.故選:A.9、A【解析】根據題意設出圓的方程,列式即可求出【詳解】依題可設圓的方程為,所以,解得即圓的方程是故選:A10、B【解析】根據平面的性質分別判斷充分性和必要性.【詳解】充分性:若內有三個點到的距離相等,當這三個點不在一條直線上時,可得;當這三個點在一條直線上時,則、平行或相交,故充分性不成立;必要性:若,則內每個點到的距離相等,故必要性成立,所以“內有三個點到的距離相等”是“”的必要不充分條件.故選:B.11、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設拋物線的焦點為F,由拋物線的定義知,即,解得.故選:C.【點晴】本題主要考查利用拋物線的定義計算焦半徑,考查學生轉化與化歸思想,是一道容易題.12、A【解析】求出兩直線垂直的充要條件后再根據充分必要條件的定義判斷.【詳解】由,得,即或所以,反之,則不然所以“”是“直線與直線垂直”的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】設切點,根據,可得,在中,利用余弦定理構造齊次式,從而可得出答案.【詳解】解:設切點,由,∴,∵為中點,則為中位線,∴,,中,,,,∴.故答案為:2.14、【解析】根據二項展開式的通項公式,可知展開式中含的項,以及展開式中含的項,再根據組合數的運算即可求出結果.【詳解】解:由題意可得,展開式中含的項為,而展開式中含的項為,所以的系數為.故答案為:.15、【解析】將拋物線的方程化為標準形式,即可求解出焦點坐標.【詳解】因為拋物線方程,焦點坐標為,且,所以焦點坐標為,故答案為:.16、【解析】根據數列遞增和遞減的定義求出實數a的取值范圍.【詳解】因為數列是嚴格遞增數列或嚴格遞減數列,所以.若數列是嚴格遞增數列,則,即,即恒成立,故;若數列是嚴格遞減數列,則,即,即恒成立,由,故;綜上,實數a的取值范圍是故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)由已知得,當時,兩式作差整理得,根據等比數列的定義可得證;(2)由(1)求得,,再運用錯位相減法可求得答案.【小問1詳解】證明:因為,……①,所以當時,,當時……②,則①-②可得,所以,因為,所以數列是以2為首項,2為公比的等比數列【小問2詳解】解:由(1)知,即,因為所以,則……①,①得……②,①-②得,所以.18、(1)(2)【解析】(1)對求導,再根據題意有,據此列式求出;(2)由題可知對恒成立,即對恒成立,因此求出在區間上的最小值即可得出結論.【詳解】(1),則,因為在處取得極值,所以,解得,經檢驗,當時,在處取得極值;(2)因為在上單調遞減,所以對恒成立,則對恒成立,∵當時,,∴,即a的取值范圍為.【點睛】本題主要考查利用函數的單調性與極值求參,需要學生對相關基礎知識牢固掌握且靈活運用.19、(1)或(2)【解析】(1)根據兩條平行直線的距離公式列方程,化簡求得的值.(2)利用弦長公式求得.【小問1詳解】因為兩條平行直線:與:間的距離為3,所以解得或.【小問2詳解】圓C:,圓心為,半徑為.圓心到直線的距離為,所以弦長20、(1)橢圓方程為雙曲線方程為;(2)12【解析】(1)根據半焦距,設橢圓長半軸為a,由離心率之比求出a,進而求出橢圓短半軸的長及雙曲線的虛半軸的長,寫出橢圓和雙曲線的標準方程;(2)由橢圓、雙曲線的定義求出與的長,在三角形中,利用余弦定理求出cos∠的值,進一步求得sin∠的值,代入面積公式得答案試題解析:(1)設橢圓方程為,雙曲線方程為(a,b,m,n>0,且a>b),則解得:a=7,m=3,∴b=6,n=2,∴橢圓方程為雙曲線方程為(2)不妨設F1,F2分別為左、右焦點,P是第一象限的一個交點,則PF1+PF2=14,PF1-PF2=6,∴PF1=10,PF2=4,∴cos∠F1PF2==,∴sin∠F1PF2=.∴S△F1PF2=PF1·PF2sin∠F1PF2=·10·4·=12考點:橢圓雙曲線方程及性質21、(1);(2)3.【解析】(1)把展開得,兩邊同乘得,再代極坐標公式得曲線的直角坐標方程.(2)將代入曲線C的直角坐標方程得,再利用直線參數方程t的幾何意義和韋達定理求解.【詳解】(1)把展開得,兩邊同乘得①將代入①,即得曲線的直角坐標方程為②(2)將代入②式,得,點M的直角坐標為(0,3),設這個方程的兩個實數根分別為t1,t2,則∴t1<0,t2<0則由參數t的幾何意義即得.【點睛】本題主要考查極坐標和直角坐標的互化、直線參數方程t的幾何意義,屬于基礎題.22、(1);(2)或.【解析】(1)由虛軸長是12求出半
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司臘八促銷活動方案
- 公司物業送花活動方案
- 公司歡迎晚會策劃方案
- 公司聚餐寫活動方案
- 公司生日會小策劃方案
- 公司淘寶推廣活動方案
- 公司旅游營銷策劃方案
- 2025年在線教育平臺運營考試試卷及答案
- 2025年智能制造及工程技術考試題及答案
- 2025年信貸風險管理師職業資格考試試題及答案
- GB/T 12149-2017工業循環冷卻水和鍋爐用水中硅的測定
- 斷絕子女關系協議書模板(5篇)
- 成都小升初數學分班考試試卷五
- Q∕SY 01007-2016 油氣田用壓力容器監督檢查技術規范
- 水利水電 流體力學 外文文獻 外文翻譯 英文文獻 混凝土重力壩基礎流體力學行為分析
- 零星維修工程項目施工方案
- 物流公司超載超限整改報告
- 起重機安裝施工記錄表
- 江蘇省高中學生學籍卡
- 碳排放問題的研究--數學建模論文
- 贏越酒會講解示范
評論
0/150
提交評論