




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇省啟東市建新中學高二上數學期末學業質量監測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“函數在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知p:,那么p的一個充分不必要條件是()A. B.C. D.3.已知雙曲線右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A.2 B.C. D.4.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條5.已知雙曲線上點到點的距離為15,則點到點的距離為()A.9 B.6C.6或36 D.9或216.已知雙曲線(,)的左、右焦點分別為,,點A的坐標為,點P是雙曲線在第二象限的部分上一點,且,點Q是線段的中點,且,Q關于直線PA對稱,則雙曲線的離心率為()A.3 B.2C. D.7.設實數x,y滿足約束條件則的最小值()A.5 B.C. D.88.已知等差數列前項和為,且,,則此數列中絕對值最小的項為A.第5項 B.第6項C.第7項 D.第8項9.南宋數學家楊輝在《詳解九章算法》中討論過高階等差數列與一般等差數列不同,前后兩項之差并不相等,而是逐項差數之差或者高次差相等.例如“百層球堆垛”:第一層有1個球,第二層有3個球,第三層有6個球,第四層有10個球,第五層有15個球,…,各層球數之差:,,,,…即2,3,4,5,…是等差數列.現有一個高階等差數列,其前6項分別為1,3,6,12,23,41,則該數列的第8項為()A.51 B.68C.106 D.15710.圓與直線的位置關系為()A.相切 B.相離C.相交 D.無法確定11.若直線的一個方向向量為,直線的一個方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°12.命題“對任何實數,都有”的否定形式是()A.,使得B.,使得C.,使得D.,使得二、填空題:本題共4小題,每小題5分,共20分。13.已知圓錐底面半徑為1,高為,則該圓錐的側面積為_____14.已知圓,過點作圓O的切線,則切線方程為___________.15.函數的導數_________________.16.如圖,橢圓的左、右焦點分別為,過橢圓上的點作軸的垂線,垂足為,若四邊形為菱形,則該橢圓的離心率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,若問題中的存在,求實數的取值范圍;若問題中的不存在,請說明理由設等差數列的前n項和為,數列的前n項和為,___________,,,是否存在實數,對任意都有?18.(12分)四棱錐中,平面,四邊形為平行四邊形,(1)若為中點,求證平面;(2)若,求面與面的夾角的余弦值.19.(12分)△的內角A,B,C的對邊分別為a,b,c.已知(1)求角B的大小;(2)若△不為鈍角三角形,且,,求△的面積20.(12分)在直三棱柱中,、、、分別為中點,.(1)求證:平面(2)求二面角的余弦值21.(12分)已知函數(其中a常數)(1)求的單調遞增區間;(2)若,時,的最小值為4,求a的值22.(10分)人類社會正進入數字時代,網絡成為了必不可少的工具,智能手機也給我們的生活帶來了許多方便.但是這些方便、時尚的手機,卻也讓你的眼睛離健康越來越遠.為了了解手機對視力的影響程度,某研究小組在經常使用手機的中學生中進行了隨機調查,并對結果進行了換算,統計了中學生一個月中平均每天使用手機的時間x(小時)和視力損傷指數的數據如下表:平均每天使用手機的時間x(小時)1234567視力損傷指數y25812151923(1)根據表中數據,求y關于x的線性回歸方程.(2)該小組研究得知:視力的下降值t與視力損傷指數y滿足函數關系式,如果小明在一個月中平均每天使用9個小時手機,根據(1)中所建立的回歸方程估計小明視力的下降值(結果保留一位小數).參考公式及數據:,..
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】對求導,取得函數在上有極值的等價條件,再根據充分條件和必要條件的定義進行判斷即可【詳解】解:,則,令,可得,當時,,當時,,即在上單調遞減,在上單調遞增,所以,函數在處取得極小值,若函數在上有極值,則,,因為,但是由推不出,因此是函數在上有極值的必要不充分條件故選:B2、C【解析】按照充分不必要條件依次判斷4個選項即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,,正確;D選項:,錯誤.故選:C.3、B【解析】,得出到漸近線的距離為,由此可得的關系,從而求得離心率【詳解】因為,而,所以是等邊三角形,到直線的距離為,又,漸近線方程取,即,所以,化簡得故選:B4、C【解析】根據直線的斜率存在與不存在,分類討論,結合雙曲線的漸近線的性質,即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關系,以及雙曲線的漸近線的性質,其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應用,屬于基礎題.5、D【解析】利用雙曲線的定義可得答案.【詳解】設,,,為雙曲線的焦點,則由雙曲線定義,知,而所以或21故選:D.6、C【解析】由角平分線的性質可得,結合已知條件即可求雙曲線的離心率.【詳解】由題設,易知:,由知:,即,整理得:.故選:C7、B【解析】做出,滿足約束條件的可行域,結合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當直線經過點時有最小值,由得,所以的最小值為.故選:B.8、C【解析】設等差數列的首項為,公差為,,則,又,則,說明數列為遞減數列,前6項為正,第7項及后面的項為負,又,則,則在數列中絕對值最小的項為,選C.9、C【解析】對高階等差數列按其定義逐一進行構造數列,直到出現一般等差數列為止,再根據其遞推關系進行求解.【詳解】現有一個高階等差數列,其前6項分別為1,3,6,12,23,41,各項與前一項之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差數列,所以,故選:C10、C【解析】先計算出直線恒過定點,而點在圓內,所以圓與直線相交.【詳解】直線可化為,所以恒過定點.把代入,有:,所以在圓內,所以圓與直線的位置關系為相交.故選:C11、C【解析】直接由公式,計算兩直線的方向向量的夾角,進而得出直線與所成角的大小【詳解】因為,,所以,所以,所以直線與所成角的大小為故選:C12、B【解析】可將原命題變成全稱命題形式,而全稱命題的否定為特稱命題,即可選出答案.【詳解】命題“對任何實數,都有”,可寫成:,使得,此命題為全稱命題,故其否定形式為:,使得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知求得母線長,代入圓錐側面積公式求解【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側面積S=πrl=2π故答案為2π【點睛】本題考查圓錐側面積的求法,側面積公式S=πrl.14、或【解析】首先判斷點圓位置關系,再設切線方程并聯立圓的方程,根據所得方程求參數k,即可寫出切線方程.【詳解】由題設,,故在圓外,根據圓及,知:過作圓O的切線斜率一定存在,∴可設切線為,聯立圓的方程,整理得,∴,解得或.∴切線方程為或.故答案為:或.15、.【解析】根據初等函數的導數法則和導數的四則運算法則,準確運算,即可求解.【詳解】由題意,函數,可得.故答案為:.16、【解析】根據題意可得,利用推出,進而得出結果.【詳解】由題意知,,將代入方程中,得,因為,所以,整理,得,又,所以,由,解得.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、答案見解析【解析】由已知條件可得,假設時,取最小值,則,若補充條件是①,則可求得,代入化簡可求出的取值范圍,從而可求得答案,若補充條件是②,則可得,該數列是遞減數列,所以不存在k,使得取最小值,若補充條件是③,則可得,代入化簡可求出的取值范圍,從而可求得答案,【詳解】解:等差數列的公差為d,當時,,得,從而,當時,得,所以數列是首項為,公比為的等比數列,所以,由對任意,都有,當等差數列的前n項和存在最小值時,假設時,取最小值,所以;若補充條件是①,因為,,從而,由得,所以,由等差數列的前n項和存在最小值,則,得,又,所以.所以,故實數的取值范圍為若補充條件是②,由,即,又,所以.所以,由于該數列是遞減數列,所以不存在k,使得取最小值,故實數不存在以下為嚴格的證明:由等差數列的前n項和存在最小值,則,得,所以,所以不存在k,使得取最小值,故實數不存在若補充條件是③,由,得,又,所以,所以由等差數列的前n項和存在最小值,則,得,又,所以.所以存在,使得取最小值,所以,故實數的取值范圍為18、(1)證明見解析(2)【解析】(1)先證,,再證平面即可;(2)建立空間直角坐標系,先求出面與面的法向量,再計算夾角余弦值即可.小問1詳解】取中點,連接,則四邊形為平行四邊形,,為直角三角形,且.又平面,平面,.又,平面.【小問2詳解】,為等邊三角形,取中點,連接,則,以為坐標原點,分別以為軸建立空間坐標系,如圖令,則,設面的法向量為,則由得取,則設面的法向量為,則由得取,則設面與面的夾角為,則所以面與面的夾角的余弦值為.19、(1)或;(2).【解析】(1)根據正弦定理邊角關系可得,再由三角形內角的性質求其大小即可.(2)由(1)及題設有,應用余弦定理求得、,最后利用三角形面積公式求△的面積【小問1詳解】由正弦定理得:,又,所以,又B為△的一個內角,則,所以或;【小問2詳解】由△不為鈍角三角形,即,又,,由余弦定理,,得(舍去負值),則∴20、(1)見解析;(2)【解析】(1)取中點,連接,根據直棱柱的特征,易知,再由、分別為的中點,根據中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點,連接,以為原點,、、分別為、、軸建立空間直角坐標系,則.,再分別求得平面和平面的一個法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點,連接,易知,、分別為的中點,∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點,連接,以為原點,、、分別為、、軸建立如圖所示的空間直角坐標系,如圖所示:則∴,設平面的法向量為,則,即,取,得,易知平面的一個法向量為,∴,∴二面角的余弦值為【點睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.21、(1);(2).【解析】(1)利用三角恒等變換思想化簡函數解析式為,然后解不等式,可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025不銹鋼型材加工合同范本
- 2025年湖南將加班補貼納入合同范本
- 2025企業管理資源設計公司員工合同文件范例
- 理論與實踐結合2025年入團試題及答案
- 高二期末統考試卷及答案
- 消防技術標準考題及答案
- 無人機使用注意事項試題及答案
- 2025年項目經理終止勞動合同關系
- 護理團隊合作試題及答案
- 資產負債表審計細節試題及答案
- 普惠金融專員試題及答案
- 《心電圖機操作與應用》課件
- 辦公樓清潔服務工作外包合同5篇
- 2025中小學學校校服采購工作方案
- 2024年煙臺龍口市衛生健康局所屬事業單位招聘工作人員筆試真題
- 輸變電工程建設管理綱要
- 全球化背景下高中歷史家國情懷教育的策略
- 《中國潰瘍性結腸炎診治指南(2023年)》解讀
- 清朝治理新疆地區系統性治理課件(16ppt+視頻)2022年新疆地方史讀本(中學版)
- 員工分紅合作協議書54559
- 國家自然科學基金項目評審打分表.xls
評論
0/150
提交評論