




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省運城市景勝中學2025屆高二數學第一學期期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若圓上恰有2個點到直線的距離為1,則實數的取值范圍為()A B.C. D.2.某地為響應總書記關于生態文明建設的號召,大力開展“青山綠水”工程,造福于民,擬對該地某湖泊進行治理,在治理前,需測量該湖泊的相關數據.如圖所示,測得角∠A=23°,∠C=120°,米,則A,B間的直線距離約為(參考數據)()A.60米 B.120米C.150米 D.300米3.經過兩點直線的傾斜角是()A. B.C. D.4.由小到大排列的一組數據:,其中每個數據都小于,另一組數據2、的中位數可以表示為()A. B.C. D.5.已知函數,那么的值為()A. B.C. D.6.已知橢圓,則橢圓的長軸長為()A.2 B.4C. D.87.若,則下列結論不正確的是()A. B.C. D.8.中國大運河項目成功人選世界文化遺產名錄,成為中國第46個世界遺產項目,隨著對大運河的保護與開發,大運河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團乘游船從奧體公園碼頭出發順流而下至漕運碼頭,又立即逆水返回奧體公園碼頭,已知游船在順水中的速度為,在逆水中的速度為,則游船此次行程的平均速度V與的大小關系是()A. B.C. D.9.已知某班有學生48人,為了解該班學生視力情況,現將所有學生隨機編號,用系統抽樣的方法抽取一個容量為4的樣本已知3號,15號,39號學生在樣本中,則樣本中另外一個學生的編號是()A.26 B.27C.28 D.2910.已知函數在區間有且僅有2個極值點,則m的取值范圍是()A. B.C. D.11.已知關于的不等式的解集是,則的值是()A B.5C. D.712.拋物線的焦點到直線的距離()A. B.C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.若拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是___________.14.已知p:x>a是q:2<x<3的必要不充分條件,則實數a的取值范圍是______.15.在中,內角,,的對邊分別為,,,若,且,則_______16.已知橢圓C:的左右焦點分別為,,O為坐標原點,以下說法正確的是______①過點的直線與橢圓C交于A,B兩點,則的周長為8②橢圓C上存在點P,使得③橢圓C的離心率為④P為橢圓上一點,Q為圓上一點,則線段PQ的最大長度為3三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知頂點,,動點分別在軸,軸上移動,延長至點,使得,且.(1)求動點的軌跡;(2)過點分別作直線交曲線于兩點,若直線的傾斜角互補,證明:直線的斜率為定值;(3)過點分別作直線交曲線于兩點,若,直線是否經過定點?若是,求出該定點,若不是,說明理由.18.(12分)已知圓經過坐標原點和點,且圓心在軸上.(1)求圓的方程;(2)已知直線與圓相交于A、B兩點,求所得弦長的值.19.(12分)已知拋物線的焦點F到準線的距離為2(1)求C的方程;(2)已知O為坐標原點,點P在C上,點Q滿足,求直線斜率最大值.20.(12分)已知函數.(1)求函數在處的切線方程;(2)求函數在區間上的最大值與最小值.21.(12分)如圖,五邊形為東京奧運會公路自行車比賽賽道平面設計圖,根據比賽需要,在賽道設計時需預留出,兩條服務通道(不考慮寬度),,,,,為賽道.現已知,,千米,千米(1)求服務通道的長(2)在上述條件下,如何設計才能使折線賽道(即)的長度最大,并求最大值22.(10分)在如圖所示的幾何體中,四邊形是平行四邊形,,,,四邊形是矩形,且平面平面,,點是線段上的動點(1)證明:;(2)設平面與平面的夾角為,求的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求得圓心到直線的距離,根據題意列出的不等關系式,即可求得的范圍.【詳解】因為圓心到直線的距離,故要滿足題意,只需,解得.故選:A.2、C【解析】應用正弦定理有,結合已知條件即可求A,B間的直線距離.【詳解】由題設,,在△中,,即,所以米.故選:C3、B【解析】求出直線的斜率后可得傾斜角【詳解】經過兩點的直線的斜率為,設該直線的傾斜角為,則,又,所以.故選:B4、C【解析】先根據題意對數據進行排列,然后由中位數的定義求解即可【詳解】因為由小到大排列的一組數據:,其中每個數據都小于,所以另一組數據2、從小到大的排列為,所以這一組數的中位數為,故選:C5、D【解析】直接求導,代入計算即可.【詳解】,故.故選:D.6、B【解析】根據橢圓的方程求出即得解.【詳解】解:由題得橢圓的所以橢圓的長軸長為.故選:B7、B【解析】由得出,再利用不等式的基本性質和基本不等式來判斷各選項中不等式的正誤.【詳解】,,,,A選項正確;,B選項錯誤;由基本不等式可得,當且僅當時等號成立,,則等號不成立,所以,C選項正確;,,D選項正確.故選:B.【點睛】本題考查不等式正誤的判斷,涉及不等式的基本性質和基本不等式,考查推理能力,屬于基礎題.8、A【解析】求出平均速度V,進而結合基本不等式求得答案.【詳解】易知,設奧運公園碼頭到漕運碼頭之間的距離為1,則游船順流而下的時間為,逆流而上的時間為,則平均速度,由基本不等式可得,而,當且僅當時,兩個不等式都取得“=”,而根據題意,于是.故選:A.9、B【解析】由系統抽樣可知抽取一個容量為4的樣本時,將48人按順序平均分為4組,由已知編號可得所求的學生來自第三組,設其編號為,則,進而求解即可【詳解】由系統抽樣可知,抽取一個容量為4的樣本時,將48人分為4組,第一組編號為1號至12號;第二組編號為13號至24號;第三組編號為25號至36號;第四組編號為37號至48號,故所求的學生來自第三組,設其編號為,則,所以,故選:B【點睛】本題考查系統抽樣的編號,屬于基礎題10、A【解析】根據導數的性質,結合余弦型函數的性質、極值的定義進行求解即可.【詳解】由,,因為在區間有且僅有2個極值點,所以令,解得,因此有,故選:A11、D【解析】由題意可得的根為,然后利用根與系數的關系列方程組可求得結果【詳解】因為關于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D12、B【解析】由拋物線可得焦點坐標,結合點到直線的距離公式,即可求解.【詳解】由拋物線可得焦點坐標為,根據點到直線的距離公式,可得,即拋物線的焦點到直線的距離為.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】根據拋物線的定義知點P到焦點距離等于到準線的距離即可求解.【詳解】因為拋物線方程為,所以準線方程,所以點到準線的距離為,故點到該拋物線焦點的距離.故答案為:14、【解析】根據充分性和必要性,求得參數取值范圍,即可求得結果.【詳解】因為p:x>a是q:2<x<3的必要不充分條件,故集合為集合的真子集,故只需.故答案為:.15、【解析】代入,展開整理得,①化為,與①式相加得,轉化為關于的方程,求解即可得出結論.【詳解】因為,所以,所以,因為,所以,則,整理得,解得.故答案為:.【點睛】本題考查正弦定理的邊角互化,考查三角函數化簡求值,屬于中檔題.16、①②④【解析】根據橢圓的幾何性質結合的周長計算可判斷①;根據,可通過以為直徑作圓,是否與橢圓相交判斷②;求出橢圓的離心率可判斷③;計算橢圓上的點到圓心的距離的最大值,即可判斷④.【詳解】對于①,由題意知:的周長等于,故①正確;對于②,,故以為直徑作圓,與橢圓相交,交點即設為P,故橢圓C上存在點P,使得,故②正確;對于③,,故③錯誤;對于④,設P為橢圓上一點,坐標為,則,故,因為,所以的最大值為2,故線段PQ的最大長度為2+1=3,故④正確,故答案為:①②④.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3).【解析】(1)設點M,P,Q的坐標,將向量進行坐標化,整理即可得軌跡方程;(2)設點,,直線的傾斜角互補,則兩直線斜率互為相反數,用斜率公式計算得到,即可計算kAB;(3)若,由兩直線斜率積為-1,可得到關于與的等量關系,寫出直線AB的方程,將等量關系代入直線方程整理可得直線AB經過的定點【詳解】(1)設,,.由,得,即.因為,所以,所以.所以動點的軌跡為拋物線,其方程為.(2)證明:設點,,若直線的傾斜角互補,則兩直線斜率互為相反數,又,,所以,,整理得,所以.(3)因為,所以,即,①直線的方程為:,整理得:,②將①代入②得,即,當時,即直線經過定點.【點睛】本題考查直接法求軌跡方程,考查直線斜率為定值的求法和直線恒過定點問題.18、(1);(2).【解析】(1)根據條件可以確定圓心坐標和半徑,寫出圓的方程;(2)先求圓心到直線的距離,結合勾股定理可求弦長.【詳解】(1)由題意可得,圓心為(2,0),半徑為2.則圓的方程為;(2)圓心(2,0)到l的距離為d,=1,.【點睛】圓的方程求解方法:(1)直接法:確定圓心,求出半徑,寫出方程;(2)待定系數法:設出圓的方程,可以是標準方程也可以是一般式方程,根據條件列出方程,求解系數即可.19、(1);(2)最大值為.【解析】(1)由拋物線焦點與準線的距離即可得解;(2)設,由平面向量的知識可得,進而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點,準線方程為,由題意,該拋物線焦點到準線的距離為,所以該拋物線的方程為;(2)[方法一]:軌跡方程+基本不等式法設,則,所以,由在拋物線上可得,即,所以直線的斜率,當時,;當時,,當時,因為,此時,當且僅當,即時,等號成立;當時,;綜上,直線斜率的最大值為.[方法二]:【最優解】軌跡方程+數形結合法同方法一得到點Q的軌跡方程為設直線的方程為,則當直線與拋物線相切時,其斜率k取到最值.聯立得,其判別式,解得,所以直線斜率的最大值為[方法三]:軌跡方程+換元求最值法同方法一得點Q的軌跡方程為設直線的斜率為k,則令,則的對稱軸為,所以.故直線斜率的最大值為[方法四]參數+基本不等式法由題可設因,所以于是,所以則直線的斜率為當且僅當,即,時等號成立,所以直線斜率的最大值為【整體點評】方法一根據向量關系,利用代點法求得Q的軌跡方程,得到直線OQ的斜率關于的表達式,然后利用分類討論,結合基本不等式求得最大值;方法二同方法一得到點Q的軌跡方程,然后利用數形結合法,利用判別式求得直線OQ的斜率的最大值,為最優解;方法三同方法一求得Q的軌跡方程,得到直線的斜率k的平方關于的表達式,利用換元方法轉化為二次函數求得最大值,進而得到直線斜率的最大值;方法四利用參數法,由題可設,求得x,y關于的參數表達式,得到直線的斜率關于的表達式,結合使用基本不等式,求得直線斜率的最大值.20、(1)(2),【解析】(1)根據導數的幾何意義即可求解;(2)根據導數的正負判斷f(x)的單調性,根據其單調性即可求最大值和最小值.【小問1詳解】,切點為(1,-2),∵,∴切線斜率,切線方程為;【小問2詳解】令,解得,1200極大值極小值2∵,,∴當時,,.21、(1)服務通道的長為千米(2)時,折線賽道的長度最大,最大值為千米【解析】(1)先在中利用正弦定理得到長度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負值舍去)所以服務通道的長為千米【小問2詳解】在中,由余弦定理得:,即,所以因為,所以,所以,即(當且僅當時取等號)即當時,折線賽道的長度最大,最大值為千米22、(1)證明見解析;(2).【解析】(1)要證,只需證平面,只需證(由勾股定理可證),,只需證平面,只需證(由平面平面可證),(由可證),即可證明結論.(2)以為原點,所在直線分別為x軸,y軸,z軸,建立空間直角坐標系寫出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業節能與新能源技術的推廣應用
- 工業級機房綜合布線技術要點
- 工業設計與智能制造成長路徑
- 工業遺址的環境藝術改造
- 工業設計與創新產品開發
- 工業節能的途徑與策略
- 工作效率提升工具與技巧
- 工作場所中的智能穿戴設備應用案例分享
- 工作與生活的平衡-如何做到高效工作更優生活
- 工程機械維修與故障排除
- 高級記者考試試題及答案
- 2025至2030年中國電工開關行業市場發展潛力及前景戰略分析報告
- 北京市朝陽區2023-2024學年三年級下學期語文期末考試卷
- 2025年煙花爆竹經營單位主要負責人模擬考試題及答案
- 租房合同到期交接協議書
- 中國廢舊輪胎橡膠粉項目投資計劃書
- 子宮內膜異位性疾病護理
- 人工智能芯片研究報告
- 2025貴州中考:歷史高頻考點
- pc構件吊裝安全專項施工方案
- 汽車質量意識培訓
評論
0/150
提交評論