四川省眉山外國語學校2025屆數學高二上期末統考模擬試題含解析_第1頁
四川省眉山外國語學校2025屆數學高二上期末統考模擬試題含解析_第2頁
四川省眉山外國語學校2025屆數學高二上期末統考模擬試題含解析_第3頁
四川省眉山外國語學校2025屆數學高二上期末統考模擬試題含解析_第4頁
四川省眉山外國語學校2025屆數學高二上期末統考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省眉山外國語學校2025屆數學高二上期末統考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某中學初中部共有110名教師,高中部共有150名教師,其性別比例如圖所示,則該校男教師的人數為()A.167 B.137C.123 D.1132.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.若,(),則,的大小關系是A. B.C. D.,的大小由的取值確定4.已知全集,集合,則()A. B.C. D.5.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.6.已知命題是真命題,那么的取值范圍是()A. B.C. D.7.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.已知雙曲線,過點作直線l與雙曲線交于A,B兩點,則能使點P為線段AB中點的直線l的條數為()A.0 B.1C.2 D.39.過點且與橢圓有相同焦點的雙曲線方程為()A B.C. D.10.用1,2,3,4這4個數字可寫出()個沒有重復數字的三位數A.24 B.12C.81 D.6411.已知雙曲線,過左焦點且與軸垂直的直線與雙曲線交于、兩點,若弦的長恰等于實鈾的長,則雙曲線的離心率為()A. B.C. D.12.如圖所示,為了測量A,B處島嶼的距離,小張在D處觀測,測得A,B分別在D處的北偏西、北偏東方向,再往正東方向行駛10海里至C處,觀測B在C處的正北方向,A在C處的北偏西方向,則A,B兩處島嶼間的距離為()海里.A. B.C. D.10二、填空題:本題共4小題,每小題5分,共20分。13.若函數,則_______14.若,則__________15.已知雙曲線(a,b>0)的左、右焦點分別為F1,F2,過點F1且傾斜角為的直線l與雙曲線的左、右支分別交于點A,B.且|AF2|=|BF2|,則該雙曲線的離心率為____________.16.寫出一個同時具有性質①②的函數___________.(不是常值函數),①為偶函數;②.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線E:y2=8x(1)求拋物線的焦點及準線方程;(2)過點P(-1,1)的直線l1與拋物線E只有一個公共點,求直線l1的方程;(3)過點M(2,3)的直線l2與拋物線E交于點A,B.若弦AB的中點為M,求直線l2的方程18.(12分)已知數列的前項和為,且(1)求數列的通項公式;(2)若,求數列的前項和.19.(12分)已知(1)討論函數的單調性;(2)若函數在上有1個零點,求實數a的取值范圍20.(12分)已知,.(1)若,為假命題,求的取值范圍;(2)若是的必要不充分條件,求實數的取值范圍.21.(12分)在平面直角坐標系中,設點,直線,點P在直線l上移動,R是線段PF與y軸的交點,也是PF的中點.,(1)求動點Q的軌跡的方程E;(2)過點F作兩條互相垂直的曲線E的弦AB、CD,設AB、CD的中點分別為M,N.求直線MN過定點R的坐標22.(10分)一個經銷鮮花產品的微店,為保障售出的百合花品質,每天從云南鮮花基地空運固定數量的百合花,如有剩余則免費分贈給第二天購花顧客,如果不足,則從本地鮮花供應商處進貨.今年四月前10天,微店百合花的售價為每支2元,云南空運來的百合花每支進價1.6元,本地供應商處百合花每支進價1.8元,微店這10天的訂單中百合花的需求量(單位:支)依次為:251,255,231,243,263,241,265,255,244,252.(Ⅰ)求今年四月前10天訂單中百合花需求量的平均數和眾數,并完成頻率分布直方圖;(Ⅱ)預計四月的后20天,訂單中百合花需求量的頻率分布與四月前10天相同,百合花進貨價格與售價均不變,請根據(Ⅰ)中頻率分布直方圖判斷(同一組中的需求量數據用該組區間的中點值作代表,位于各區間的頻率代替位于該區間的概率),微店每天從云南固定空運250支,還是255支百合花,四月后20天百合花銷售總利潤會更大?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據圖形分別求出初中部和高中部男教師的人數,最后相加即可.【詳解】初中部男教師的人數為110×(170%)=33;高中部男教師的人數為150×60%=90,∴該校男教師的人數為33+90=123.故選:C.2、B【解析】方程表示橢圓,可得,解出的范圍即可判斷出結論.【詳解】∵方程表示橢圓,∴解得或,故“”是“方程表示橢圓”的必要不充分條件.故選:B3、A【解析】∵且,∴,又,∴,故選A.4、B【解析】根據題意先求出,再利用交集定義即可求解.【詳解】全集,集合,則,故故選:B5、A【解析】直線AC、BD與坐標軸重合時求出四邊形面積,與坐標軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當直線AC斜率存在且不0時,設其方程為,由消去y得:,設,則,,直線BD方程為,同理得:,則有,當且僅當,即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A6、C【解析】依據題意列出關于的不等式,即可求得的取值范圍.【詳解】當時,僅當時成立,不符合題意;當時,若成立,則,解之得綜上,取值范圍是故選:C7、A【解析】根據充分、必要條件間的推出關系,判斷“x>1”與“x>0”的關系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.8、A【解析】先假設存在這樣的直線,分斜率存在和斜率不存在設出直線的方程,當斜率k存在時,與雙曲線方程聯立,消去,得到關于的一元二次方程,直線與雙曲線相交于兩個不同點,則,,又根據是線段的中點,則,由此求出與矛盾,故不存在這樣的直線滿足題意;當斜率不存在時,過點的直線不滿足條件,故符合條件的直線不存在.詳解】設過點的直線方程為或,①當斜率存在時有,得(*)當直線與雙曲線相交于兩個不同點,則必有:,即又方程(*)的兩個不同的根是兩交點、的橫坐標,又為線段的中點,,即,,使但使,因此當時,方程①無實數解故過點與雙曲線交于兩點、且為線段中點的直線不存在②當時,經過點的直線不滿足條件.綜上,符合條件的直線不存在故選:A9、D【解析】設雙曲線的方程為,再代點解方程即得解.【詳解】解:由得,所以橢圓的焦點為.設雙曲線的方程為,因為雙曲線過點,所以.所以雙曲線的方程為.故選:D10、A【解析】由題意,從4個數中選出3個數出來全排列即可.【詳解】由題意,從4個數中選出3個數出來全排列,共可寫出個三位數.故選:A11、B【解析】求出,進而求出,之間的關系,即可求解結論【詳解】解:由題意,直線方程為:,其中,因此,設,,,,解得,得,,弦的長恰等于實軸的長,,,故選:B12、C【解析】分別在和中,求得的長度,再在中,利用余弦定理,即可求解.【詳解】如圖所示,可得,所以,在中,可得,在直角中,因為,所以,在中,由余弦定理可得,所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】先對函數求導,然后令可求出的值【詳解】因為,所以,則,解得故答案為:14、【解析】分別令和,再將兩個等式相加可求得的值.【詳解】令,則;令,則.上述兩式相加得故答案為:.【點睛】本題考查偶數項系數和的計算,一般令和,通過對等式相加減求得,考查計算能力,屬于中等題.15、【解析】由雙曲線的定義和直角三角形的勾股定理,以及解直角三角形,可得a,c的關系,再由離心率公式可得所求值【詳解】過F2作F2N⊥AB于點N,設|AF2|=|BF2|=m,因為直線l的傾斜角為,所以在直角三角形F1F2N中,,由雙曲線的定義可得|BF1|﹣|BF2|=2a,所以|BF1|=2a+m,同理可得|AF1|=m﹣2a,所以|AB|=|BF1|﹣|AF1|=4a,即|AN|=2a,所以|AF1|=c﹣2a,因此,在直角三角形ANF2中,|AF2|2=|NF2|2+|AN|2,所以(c)2=4a2+c2,所以c=a,則,故答案為:16、(答案不唯一)【解析】利用導函數周期和奇偶性構造導函數,再由導函數構造原函數列舉即可.【詳解】由知函數的周期為,則,同時滿足為偶函數,所以滿足條件.故答案為:(答案不唯一).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)焦點為(2,0),準線方程為x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根據拋物線的方程及其幾何性質,求焦點和準線;(2)分直線l1的斜率為0和不為0兩種情況,根據直線與拋物線只有一個公共點,由直線與x軸平行或Δ=0,得解;(3)利用點差法求出直線l2的斜率,即可得直線l2的方程【小問1詳解】由題意,p=4,則焦點為(2,0),準線方程為x=-2【小問2詳解】當直線l1的斜率為0時,y=1;當直線l1的斜率不為0時,設直線l1為x+1=m(y-1),聯立,得y2-8my+8m+8=0,因為直線l1與拋物線E只有一個公共點,所以Δ=64m2-4(8m+8)=0,解得m=1或,所以直線l1的方程為x-y+2=0或2x+y+1=0,綜上,直線l1為y=1或x-y+2=0或2x+y+1=0【小問3詳解】由題意,直線l2的斜率一定存在,設其斜率為k,A(x1,y1),B(x2,y2),則8x1,8x2,兩式作差得:8(x1-x2),即k,所以直線l2為y-3(x-2),即4x-3y+1=018、(1)(2)【解析】(1)根據,再結合等比數列的定義,即可求出結果;(2)由(1)可知,再利用錯位相減法,即可求出結果.【小問1詳解】解:因為,當時,,解得當時,,所以,即.所以數列是首項為2,公比為2的等比數列.故.【小問2詳解】解:由(1)知,則,所以①②,①-②得.所以數列的前項和19、(1)答案見解析;(2).【解析】(1)對函數求導,按a值的正負分析討論導數值的符號計算作答.(2)求出函數的解析式并求導,再按在值的正負分段討論推理作答.【小問1詳解】函數的定義域為R,求導得:當時,當時,,當時,,則在上單調遞減,在上單調遞增,當時,令,得,若,即時,,則有在R上單調遞增,若,即時,當或時,,當時,,則有在,上都單調遞增,在上單調遞減,若,即時,當或時,,當時,,則有在,上都單調遞增,在上單調遞減,所以,當時,上單調遞減,在上單調遞增,當時,在,上都單調遞增,在上單調遞減,當時,在R上單調遞增,當時,在,上都單調遞增,在上單調遞減.【小問2詳解】依題意,,,當時,,當時,,,則函數在上單調遞增,有,無零點,當時,,,函數在上單調遞減,,無零點,當時,,使得,而在上單調遞增,當時,,當時,,因此,在上單調遞增,在上單調遞減,又,若,即時,無零點,若,即時,有一個零點,綜上可知,當時,在有1個零點,所以實數a的取值范圍.【點睛】思路點睛:涉及含參的函數零點問題,利用導數分類討論,研究函數的單調性、最值等,結合零點存在性定理,借助數形結合思想分析解決問題.20、(1)(2)【解析】(1)分別求出命題、為真時參數的取值范圍,依題意、都為假命題,求出的取值范圍,即可得解;(2)依題意可得是的必要不充分條件,則真包含于,即可得到不等式組,解得即可;【小問1詳解】由,解得,即,由,可得,所以,當時,解得,即,因為為假命題,則、都為假命題,當為假命題時:或當為假命題時:或故當、都為假命題,或綜上可得;【小問2詳解】因為是的必要不充分條件,由(1)可知,,所以真包含于,所以,解得,即21、(1)(2)【解析】(1)由圖中的幾何關系可知,故可知動點Q的軌跡E是以F為焦點,l為準線的拋物線,但不能和原點重合,即可直接寫出拋物線的方程;(2)設出直線AB的方程,把點、的坐標代入拋物線方程,兩式作差后,再利用中點坐標公式求出點M的坐標,同理求出點的坐標,即可求出直線MN的方程,最后可求出直線MN過哪一定點.【小問1詳解】∵直線的方程為,點R是線段FP的中點且,∴RQ是線段FP的垂直平分線,∵,∴是點Q到直線l的距離,∵點Q在線段FP的垂直平分線,∴,則動點Q的軌跡E是以F為焦點,l為準線的拋物線,但不能和原點重合,即動點Q軌跡的方程為.【小問2詳解】設,,由題意直線AB斜率存在且不為0,設直線AB的方程

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論