




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
H62SPCChapter3:LaplaceTransform2016-2017BlockDiagramReductionTechniquesIBlocksinCascadeKeyPoint:Thekeythingforallblockdiagrammanipulationandreductionisthatthefunctionforthesystemoutput(orthetotalsystemtransferfunction)shouldneverchangeasaresultofblockdiagrammanipulationG1xy
G2u
yG1G2xBlockDiagramReductionTechniquesIIMovingatakeoffpointaheadofablockMovingatakeoffpointbehindablockYXZGYXZGGy=Gxz=Gxy=Gxz=GxYXZGYXG
Zy=Gxz=xy=Gx
BlockDiagramReductionTechniquesIIIMovingsummingjunctionszxy++
Gzxy++
GG
zxy++
Gzx++G
y
BlockDiagramReductionTechniquesIVReductionoffeed-forwardpaths(BlocksinParallel)YXG++Hxy
BlockDiagramReductionTechniquesVReductionoffeedbackloopsYXG++HxyeHy
BlockDiagramReductionTechniquesVIReductionoffeedbackloopsYXG+-HxyeHy
Thisoneisverycommonlyusedinclosedloopcontrolsystemanalysis!BlockDiagramReductionTechniquesVIISystemswithMultipleInputsThereisoftenmorethanoneinputintoasystem…G1xzG2u++yXandYarebothinputsintothesystem,zistheoutput
Note-thiscouldalsobesolvedusingthesuperpositiontheorem--Assumey=0,calculateZ-Assumex=0,calculateZ-FullzisthesumofthesetworesultsFirstOrderSystemsIfanelementofenergystorageisassociatedwithanelementofenergydissipationthenthenatureoftheoutputisgivenby:
x=inputvariabley=outputvariableT=Timeconstantk=gainExample:vvRvLiRL
Comparetostandardform:
ResponseofafirstOrderSystem:UnitStepWeusea“StepInput”totesttheresponseofasystemtoinstantaneouschangesininput:x(t)=u(t):Itispossibletomathematicallyprovethatthesolutiontothedifferentialequationis:y0k
tTransientStateandSteadyState5TTransientStateSteadyStateResponseofafirstOrderSystem:UnitCosinevRvLiR
TheDOperator
DisamathematicaloperatorwhichrepresentstheprocessofdifferentiationwithrespecttotimeExample:
KeyPointsBlockDiagramReductionDeterminingsystemresponseWehavealreadydeducedthattheresponseofsystemstostimuliisusuallydeterminedbyadifferentialequationThismeansthatforagiveninput(astepinputforexample),inordertodeterminehowsystemresponds,wemustsolvethedifferentialequation.Thiscanbecarriedoutusingtheusualtechniques,butthereisabetterway,whichlendsitselfverywelltocontroldesignasitgivesusatransferfunction.ThemethodusesLAPLACETRANSFORMSDifferentialEquationInputConvertusingtheLaplaceTransformSolvesysteminLaplacedomainConvertbackintothetimedomainSolutionPierre-SimonLaplace:TheFrenchNewtonDevelopedmathematicsinastronomy,physics,andstatisticsBeganworkincalculuswhichledtotheLaplaceTransformFocusedlateroncelestialmechanicsOneofthefirstscientiststosuggesttheexistenceofblackholesLaplaceTransform:IdeasTheLaplaceTransformconvertsintegralanddifferentialequationsintoalgebraicequationsThisislikephasors,but:Appliestogeneralsignals,notjustsinusoidsHandlesno-steady-stateconditionsAllowsustoanalyzeComplicatedcircuitswithsources,Ls,Rs,andCsComplicatedsystemswithintegrators,differentiators,gainsHistoryoftheTransform
Eulerbeganlookingatintegralsassolutionstodifferentialequationsinthemid1700’s:Lagrangetookthisastepfurtherwhileworkingonprobabilitydensityfunctionsandlookedatformsofthefollowingequation:Finally,in1785,LaplacebeganusingatransformationtosolveequationsoffinitedifferenceswhicheventuallyleadtothecurrenttransformTheLaplaceTransform
Notes:sisusuallycomplex(notreal)sisaconstantforthepurposeofintegrationTransformationisonlyvalidfort0NotationforLaplaceTransformsTimeDomains-Domain
transformsLowercaseUppercaseWewillbeinterestedinthesignaldefinedfort>=0TheLaplaceTransformofasignal(function)f(t)isthefunctiondefinedby:s
RestrictionsTherearetwogoverningfactorsthatdeterminewhetherLaplacetransformscanbeused:f(t)mustbeatleastpiecewisecontinuousfort≥0|f(t)|≤MeγtwhereMandγareconstantsSincethegeneralformoftheLaplacetransformis:itmakessensethatf(t)mustbeatleastpiecewisecontinuousfort≥0.Iff(t)wereverynasty,theintegralwouldnotbecomputable.ContinuityBoundednessThiscriterionalsofollowsdirectlyfromthegeneraldefinition:Iff(t)isnotboundedbyMeγtthentheintegralwillnotconverge.LaplaceTransformTheoryGeneralTheoryExampleConvergenceLaplaceTransformsSomeLaplaceTransformsWidevarietyoffunctioncanbetransformedInverseTransformOftenrequirespartialfractionsorothermanipulationtofindaformthatiseasytoapplytheinverseLaplaceTransformsofCommonFunctions:UnitRampfunction
1f(t)tLaplaceTransformsofCommonFunctions:Sinusoid
f(t)t1f(t)tExponentialDecayfunction
f(t)t
Sinusoidalfunction
LaplaceTransformsofCommonFunctionsIIf(t)tDampedSinusoidfunction
LaplaceTransformsofCommonFunctionsIIIf(t)tTheunitimpulse(deltadirac)function
Unitarea
....Workingforthisistedious…
Properties:LinearityTheLaplaceTransformislinear:iffandgareanysignals,andaisanyscalar,wehave:i.e.homogeneity&superpositionhold.Example:Properties:One-to-one
What“almost”means?Iffandgdifferonlyatafinitenumberofpoints(wheretherearen’timpulses),thenF=GTimeScalingdefinesignalgbyg(t)=f(at),wherea>0;then G(s)=(1/a)F(s/a)makessense:timesarescaledbya,frequenciesby1/a.Let’scheck:Whereτ=atExponentialScaling
TimeDelay
Example:Timedelay
DerivativesintheLaplaceDomainI
sF(s)
Wheref(0)istheinitialcondition(i.e.it’svalueatt=0)ofthefunction.Ifthereisn’tonethenf(0)=0Example:Derivation
DerivativesintheLaplaceDomainII
Similarexpressionscanbederivedforhigherorderdifferentials
......Iftherearenoinitialconditionsthenthesee????(??),??2????and??3????respectivelyExample:RLCircuitTransferfunctionvvRvLiRL
Withnoinitialconditions:
iI(s)di/dtsI(s)vV(s)Assumingthevoltage,V(s),istheinput,andthecurrentwe’reconsidering,I(s)istheoutput,wecanconvertthisintoatransferfunction:
Example:RLCCircuitTransferfunction
vvRvLivC
Thistime,let’sassumethatthecapacitorvoltageistheoutputthatwewanttoderiveatransferfunctionforWithzeroinitialconditions:vc
VC(s)dvc/dtsVC(s)vV(s)
Rearrangingasatransferfunction:
IntegralintheLaplaceDomainIILetgbetherunningintegralofasignalf,i.e.,????=0??????????Then????=1????(??)i.e.,time-domainintegralesdivisionbyfrequencyvariablesExample:????=??(??),so????=1;gisaunitstepfunction????=1??fisaunitstepfunction,then????=1??;gisaunitrampfunction(g(t)=tfort>=0), ????=1??2IntegralintheLaplaceDomainII
Multiplicationbyt
Multiplicationbyt:Example
ConvolutionTheconvolutionofsignalsfandg,denoted?=?????,isthesignal???=0?????????????????Sameas???=0?????????????????;inotherwords?????=?????(verygreat)importancewillsooneclearIntermsofLaplaceTransform:????=??????(??)LaplaceTransformturnsconvolutionintomultiplication.Convolution:ProveLet’sshowthat??????=????????????=??=0∞(??=0?????????????????)???????????=??=0∞??=0????????????????????????????Whereweintegrateoverthetriangle0≤??≤??Changeorderofintegration:????=??=0∞??=??∞??????????????????????????Changeviabletto??=?????;????=????;regionofintegrationes ??≥0,??≥0Convolution:Example
FindingtheLaplaceTransform
LaplaceTransformtablesLaplaceTransformforODEsEquationwithinitialconditionsLaplacetransformislinearApplyderivativeformulaRearrangeTaketheinverseLaplaceTransforminPDEsLaplacetransformintwovariables(alwaystakenwithrespecttotimevariable,t):Inverselaplaceofa2dimensionalPDE:CanbeusedforanydimensionPDE:ODEsreducetoalgebraicequationsPDEsreducetoeitheranODE(iforiginalequationdimension2)oranotherPDE(iforiginalequationdimension>2)TheTransformreduc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 濕地公園水生植物種植及生態景觀設計施工協議
- 高端工業模具技術改造質量跟蹤及服務合同
- 土地儲備項目補償款支付及延期協議
- 影視作品兼職配音員合作協議
- 商務辦公租賃收益分配合同
- 電視劇組武術替身人員酬勞結算合同
- 兒童撫養費用與父母收入比例調整合同
- 家庭經濟狀況聯動子女撫養費用調整合同
- 海外房產投資風險評估與風險控制咨詢協議
- 蘇科版2025年中考數學三輪沖刺專題-數學思維及能力含答案
- 2022年江蘇泰州市第四人民醫院招考聘用高層次人才11人(必考題)模擬卷及答案
- 新加坡sm214th面經44踏水行歌
- 產科輸血-ppt課件
- 國家職業技能標準 (2021年版) 公共營養師
- 森林防火PPT課件
- 多合規政策及流程變化對照版
- 鋼箱梁的制作及安裝方案
- 工程測量畢業設計畢業論文
- 一元二次方程四種解法知識點與練習題(包括十字相乘法)
- 水平四籃球行進間運球教學設計
- 雨露計劃職業教育補助學籍證明四川
評論
0/150
提交評論