




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年廣西欽州市靈山縣高三第二學期第3次練考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(其中,,)的圖象如圖,則此函數表達式為()A. B.C. D.2.雙曲線的一條漸近線方程為,那么它的離心率為()A. B. C. D.3.若函數在時取得極值,則()A. B. C. D.4.已知復數滿足,則的最大值為()A. B. C. D.65.已知雙曲線的右焦點為為坐標原點,以為直徑的圓與雙曲線的一條漸近線交于點及點,則雙曲線的方程為()A. B. C. D.6.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.7.觀察下列各式:,,,,,,,,根據以上規律,則()A. B. C. D.8.將函數f(x)=sin3x-cos3x+1的圖象向左平移個單位長度,得到函數g(x)的圖象,給出下列關于g(x)的結論:①它的圖象關于直線x=對稱;②它的最小正周期為;③它的圖象關于點(,1)對稱;④它在[]上單調遞增.其中所有正確結論的編號是()A.①② B.②③ C.①②④ D.②③④9.網絡是一種先進的高頻傳輸技術,我國的技術發展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數據.如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據數據得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月10.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.11.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.若復數(是虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.若函數為偶函數,則________.14.已知實數,滿足,則的最大值為______.15.在平行四邊形中,已知,,,若,,則____________.16.平面向量與的夾角為,,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.18.(12分)在以為頂點的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.19.(12分)已知正實數滿足.(1)求的最小值.(2)證明:20.(12分)如圖,在四棱錐中,是邊長為的正方形的中心,平面,為的中點.(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.21.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.22.(10分)在中,角的對邊分別為,且.(1)求角的大小;(2)若函數圖象的一條對稱軸方程為且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由圖象的頂點坐標求出,由周期求出,通過圖象經過點,求出,從而得出函數解析式.【詳解】解:由圖象知,,則,圖中的點應對應正弦曲線中的點,所以,解得,故函數表達式為.故選:B.【點睛】本題主要考查三角函數圖象及性質,三角函數的解析式等基礎知識;考查考生的化歸與轉化思想,數形結合思想,屬于基礎題.2.D【解析】
根據雙曲線的一條漸近線方程為,列出方程,求出的值即可.【詳解】∵雙曲線的一條漸近線方程為,可得,∴,∴雙曲線的離心率.故選:D.【點睛】本小題主要考查雙曲線離心率的求法,屬于基礎題.3.D【解析】
對函數求導,根據函數在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數在時取得極值,所以,解得.故選D【點睛】本題主要考查導數的應用,根據函數的極值求參數的問題,屬于常考題型.4.B【解析】
設,,利用復數幾何意義計算.【詳解】設,由已知,,所以點在單位圓上,而,表示點到的距離,故.故選:B.【點睛】本題考查求復數模的最大值,其實本題可以利用不等式來解決.5.C【解析】
根據雙曲線方程求出漸近線方程:,再將點代入可得,連接,根據圓的性質可得,從而可求出,再由即可求解.【詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【點睛】本題考查了雙曲線的幾何性質,需掌握雙曲線的漸近線求法,屬于中檔題.6.C【解析】
計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.7.B【解析】
每個式子的值依次構成一個數列,然后歸納出數列的遞推關系后再計算.【詳解】以及數列的應用根據題設條件,設數字,,,,,,,構成一個數列,可得數列滿足,則,,.故選:B.【點睛】本題主要考查歸納推理,解題關鍵是通過數列的項歸納出遞推關系,從而可確定數列的一些項.8.B【解析】
根據函數圖象的平移變換公式求出函數的解析式,再利用正弦函數的對稱性、單調區間等相關性質求解即可.【詳解】因為f(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對稱軸,故①錯誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數g(x)的圖象關于點(,1)對稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯誤;故選:B【點睛】本題考查圖象的平移變換和正弦函數的對稱性、單調性和最小正周期等性質;考查運算求解能力和整體代換思想;熟練掌握正弦函數的對稱性、單調性和最小正周期等相關性質是求解本題的關鍵;屬于中檔題、常考題型9.C【解析】
根據圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數以及線性回歸方程的實際應用,基礎題.10.D【解析】
利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.11.B【解析】
根據誘導公式化簡再分析即可.【詳解】因為,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點睛】本題考查充分與必要條件的判定以及誘導公式的運用,屬于基礎題.12.A【解析】
將整理成的形式,得到復數所對應的的點,從而可選出所在象限.【詳解】解:,所以所對應的點為在第一象限.故選:A.【點睛】本題考查了復數的乘法運算,考查了復數對應的坐標.易錯點是誤把當成進行計算.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
二次函數為偶函數說明一次項系數為0,求得參數,將代入表達式即可求解【詳解】由為偶函數,知其一次項的系數為0,所以,,所以,故答案為:-5【點睛】本題考查由奇偶性求解參數,求函數值,屬于基礎題14.【解析】
畫出不等式組表示的平面區域,將目標函數理解為點與構成直線的斜率,數形結合即可求得.【詳解】不等式組表示的平面區域如下所示:因為可以理解為點與構成直線的斜率,數形結合可知,當且僅當目標函數過點時,斜率取得最大值,故的最大值為.故答案為:.【點睛】本題考查目標函數為斜率型的規劃問題,屬基礎題.15.【解析】
設,則,得到,,利用向量的數量積的運算,即可求解.【詳解】由題意,如圖所示,設,則,又由,,所以為的中點,為的三等分點,則,,所以.【點睛】本題主要考查了向量的共線定理以及向量的數量積的運算,其中解答中熟記向量的線性運算法則,以及向量的共線定理和向量的數量積的運算公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.16.【解析】
由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數量積,進而即可求出結果,屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結論,結合正弦定理和同角三角函數的關系易得的值,又由求出的值,最后由正弦定理求出的值,根據三角形的面積公式即可計算得出.【詳解】(1)由已知可得,所以,因為在銳角中,,所以(2)因為,所以,因為是銳角三角形,所以,所以.由正弦定理可得:,所以,所以【點睛】此類問題是高考的常考題型,主要考查了正弦定理、三角函數以及三角恒等變換等知識,同時考查了學生的基本運算能力和利用三角公式進行恒等變換的技能,屬于中檔題.18.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接交于點,取中點,連結,證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標系,平面的法向量為,平面的法向量為,計算夾角得到答案.【詳解】(Ⅰ)連接交于點,取中點,連結因為為菱形,所以.因為,所以.因為二面角為直二面角,所以平面平面,且平面平面,所以平面所以因為所以是平行四邊形,所以.所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標系.設設平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力.19.(1);(2)見解析【解析】
(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.20.(Ⅰ)詳見解析;(Ⅱ).【解析】
(Ⅰ)由正方形的性質得出,由平面得出,進而可推導出平面,再利用面面垂直的判定定理可證得結論;(Ⅱ)取的中點,連接、,以、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法能求出二面角的余弦值.【詳解】(Ⅰ)是正方形,,平面,平面,、平面,且,平面,又平面,平面平面;(Ⅱ)取的中點,連接、,是正方形,易知、、兩兩垂直,以點為坐標原點,以、、所在直線分別為、、軸建立如圖所示的空間直角坐標系,在中,,,,、、、,設平面的一個法向量,,,由,得,令,則,,.設平面的一個法向量,,,由,得,取,得,,得.,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查面面垂直的證明,同時也考查了利用空間向量法求解二面角,考查推理能力與計算能力,屬于中等題.21.(1)證明見解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個人工作空間規劃表格(辦公室)
- 春天的校園生活點滴寫實+抒情周記(5篇)
- 業務合作伙伴綜合評估結果統計表
- 生物教研組工作總結
- 顧客忠誠度與產品創新的相互關系
- 2025年四川省宜賓市中考生物真題含答案
- 項目管理的視角下的施工人員管理策略
- 項目管理中運用數學邏輯解決問題的能力提升
- 顧客服務流程優化與體驗提升
- 非物質文化遺產的數字化保護與教育推廣
- 支付分賬協議
- 老年健康與老年服務名詞術語
- 高一地理必修一地方時和區時課件
- 初中八年級數學同步作業判斷題練習1840道
- 2023年秋季國家開放大學-02154-數據庫應用技術期末考試題帶答案
- 中國工業清洗協會職業技能證考試(化學清洗)試題
- 山東省德州市寧津縣房地產市場報告
- 蘇州市五年級下學期期末數學試題題及答案
- CPK分析表的模板
- 《敬畏生命向陽而生》的主題班會
- 中華護理學會精神科專科護士理論考試試題
評論
0/150
提交評論