




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省峨山彝族自治縣峨山一中數學高三第一學期期末經典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.82.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為()A.56383 B.57171 C.59189 D.612423.一輛郵車從地往地運送郵件,沿途共有地,依次記為,,…(為地,為地).從地出發時,裝上發往后面地的郵件各1件,到達后面各地后卸下前面各地發往該地的郵件,同時裝上該地發往后面各地的郵件各1件,記該郵車到達,,…各地裝卸完畢后剩余的郵件數記為.則的表達式為().A. B. C. D.4.閱讀名著,品味人生,是中華民族的優良傳統.學生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種5.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.6.在復平面內,復數(為虛數單位)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經過,設球的半徑分別為,則()A. B. C. D.8.若滿足,且目標函數的最大值為2,則的最小值為()A.8 B.4 C. D.69.下圖所示函數圖象經過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位10.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.11.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.12.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.函數的定義域是__________.14.已知實數,滿足約束條件,則的最小值為______.15.設是定義在上的函數,且,對任意,若經過點的一次函數與軸的交點為,且互不相等,則稱為關于函數的平均數,記為.當_________時,為的幾何平均數.(只需寫出一個符合要求的函數即可)16.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數,不等式,則實數的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓C:x24+y2=1,F為其右焦點,直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點O到直線l的距離為定值.18.(12分)已知,,設函數,.(1)若,求不等式的解集;(2)若函數的最小值為1,證明:.19.(12分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內接三角形,①若點為橢圓的上頂點,原點為的垂心,求線段的長;②若原點為的重心,求原點到直線距離的最小值.20.(12分)已知函數.(1)當時,求的單調區間;(2)若函數有兩個極值點,,且,為的導函數,設,求的取值范圍,并求取到最小值時所對應的的值.21.(12分)在平面直角坐標系xOy中,曲線的參數方程為(為參數).以平面直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求曲線的極坐標方程;(2)設和交點的交點為,求的面積.22.(10分)已知橢圓:(),與軸負半軸交于,離心率.(1)求橢圓的方程;(2)設直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.2、C【解析】
根據“被5除余3且被7除余2的正整數”,可得這些數構成等差數列,然后根據等差數列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數構成首項為23,公差為的等差數列,記數列則令,解得.故該數列各項之和為.故選:C.【點睛】本題考查等差數列的應用,屬基礎題。3、D【解析】
根據題意,分析該郵車到第站時,一共裝上的郵件和卸下的郵件數目,進而計算可得答案.【詳解】解:根據題意,該郵車到第站時,一共裝上了件郵件,需要卸下件郵件,則,故選:D.【點睛】本題主要考查數列遞推公式的應用,屬于中檔題.4、B【解析】
首先將五天進行分組,再對名著進行分配,根據分步乘法計數原理求得結果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數原理的應用,易錯點是忽略分組中涉及到的平均分組問題.5、C【解析】
求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.6、C【解析】
化簡復數為、的形式,可以確定對應的點位于的象限.【詳解】解:復數故復數對應的坐標為位于第三象限故選:.【點睛】本題考查復數代數形式的運算,復數和復平面內點的對應關系,屬于基礎題.7、D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數形結合思想,轉化思想,直觀想象與數學運算的核心素養8、A【解析】
作出可行域,由,可得.當直線過可行域內的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當直線過可行域內的點時,最大,即最大,最大值為2.解方程組,得..,當且僅當,即時,等號成立.的最小值為8.故選:.【點睛】本題考查簡單的線性規劃,考查基本不等式,屬于中檔題.9、D【解析】
根據函數圖像得到函數的一個解析式為,再根據平移法則得到答案.【詳解】設函數解析式為,根據圖像:,,故,即,,,取,得到,函數向右平移個單位得到.故選:.【點睛】本題考查了根據函數圖像求函數解析式,三角函數平移,意在考查學生對于三角函數知識的綜合應用.10、A【解析】
根據直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.11、A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據,即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.12、A【解析】
根據題意依次計算得到答案.【詳解】根據題意知:,,故,,.故選:.【點睛】本題考查了數列值的計算,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由,得,所以,所以原函數定義域為,故答案為.14、【解析】
作出滿足約束條件的可行域,將目標函數視為可行解與點的斜率,觀察圖形斜率最小在點B處,聯立,解得點B坐標,即可求得答案.【詳解】作出滿足約束條件的可行域,該目標函數視為可行解與點的斜率,故由題可知,聯立得,聯立得所以,故所以的最小值為故答案為:【點睛】本題考查分式型目標函數的線性規劃問題,屬于簡單題.15、【解析】
由定義可知三點共線,即,通過整理可得,繼而可求出正確答案.【詳解】解:根據題意,由定義可知:三點共線.故可得:,即,整理得:,故可以選擇等.故答案為:.【點睛】本題考查了兩點的斜率公式,考查了推理能力,考查了運算能力.本題關鍵是分析出三點共線.16、【解析】
由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數,可得時,的最小值即為點到直線的距離,可得,對于任意的實數,不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I)|FP|=2-32x【解析】
(I)直接利用兩點間距離公式化簡得到答案.(II)設Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點O到直線l的距離為d=m【點睛】本題考查了橢圓內的線段長度,定值問題,意在考查學生的計算能力和綜合應用能力.18、(1);(2)證明見解析【解析】
(1)利用零點分段法,求出各段的取值范圍然后取并集可得結果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結果.【詳解】(1)由,所以由當時,則所以當時,則當時,則綜上所述:(2)由當且僅當時取等號所以由,所以所以令根據柯西不等式,則當且僅當,即取等號由故,又則【點睛】本題考查使用零點分段法求解絕對值不等式以及柯西不等式的應用,屬基礎題.19、;①;②.【解析】
根據題意列出方程組求解即可;①由原點為的垂心可得,軸,設,則,,根據求出線段的長;②設中點為,直線與橢圓交于,兩點,為的重心,則,設:,,,則,當斜率不存在時,則到直線的距離為1,,由,則,,,得出,根據求解即可.【詳解】解:設焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設,則,,,解得:或,,不重合,故,,故;②設中點為,直線與橢圓交于,兩點,為的重心,則,當斜率不存在時,則到直線的距離為1;設:,,,則,,則,則:,,代入式子得:,設到直線的距離為,則時,;綜上,原點到直線距離的最小值為.【點睛】本題考查橢圓的方程的知識點,結合運用向量,韋達定理和點到直線的距離的知識,屬于難題.20、(1)單調遞增區間為,單調遞減區間為(2)的取值范圍是;對應的的值為.【解析】
(1)當時,求的導數可得函數的單調區間;(2)若函數有兩個極值點,,且,利用導函數,可得的范圍,再表達,構造新函數可求的取值范圍,從而可求取到最小值時所對應的的值.【詳解】(1)函數由條件得函數的定義域:,當時,,所以:,時,,當時,,當,時,,則函數的單調增區間為:,單調遞減區間為:,;(2)由條件得:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高性能磁性復合材料的制備與表征-洞察闡釋
- 以教育家精神引領深化思政課堂改革
- 密鑰管理跨平臺兼容-洞察闡釋
- 系統動態與涌現性研究-洞察闡釋
- 垃圾發電成套設備項目投資風險評估報告
- 無人機培訓學校運營管理方案
- 互利共生昆蟲群落-洞察闡釋
- 重慶科創職業學院《物理教學技能訓練》2023-2024學年第二學期期末試卷
- 增資擴產高密度軟性印刷線路板年產360萬平方英尺項目環境影響報告書
- 培黎職業學院《微生物與免疫學》2023-2024學年第二學期期末試卷
- 發那科注塑機講義課件
- 小學德育工作會議記錄文本
- 220kV及以上變壓器組件現場安裝
- 預制混凝土板防滲渠道施工工藝及質量控制
- 公路水運工程土工試驗講義二
- 大學《管理經濟學》期末復習核心知識點及考試真題解析
- 第五章-不規則三角網TIN的建立課件
- 《刑法》講座-課件
- 中級養老護理人員技能培訓
- 第二單元第1課時《線的認識》示范課教學課件【北師大版四年級數學上冊】
- 重慶市建設工程施工項目每日“防高墜三檢”檢查記錄表
評論
0/150
提交評論