




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省商開二市2025屆數學高二上期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點且與原點距離最大的直線方程是()A. B.C. D.2.設,則的一個必要不充分條件為()A. B.C. D.3.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.4.設是公比為的等比數列,則“”是“為遞增數列”的A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.某公司有1000名員工,其中:高層管理人員為50名,屬于高收入者;中層管理人員為150名,屬于中等收入者;一般員工為800名,屬于低收入者.要對這個公司員工的收入情況進行調查,欲抽取100名員工,應當抽取的一般員工人數為()A.100 B.15C.80 D.506.在中國共產黨建黨100周年之際,廣安市某中學組織了“黨史知識競賽”活動,已知該校共有高中學生1000人,用分層抽樣的方法從該校高中學生中抽取一個容量為25的樣本參加活動,其中高二年級抽取了8人,則該校高二年級學生人數為()A.960 B.720C.640 D.3207.將5名北京冬奧會志愿者分配到花樣滑冰、短道速滑、冰球和冰壺4個項目進行培訓,每名志愿者只分配到1個項目,每個項目至少分配1名志愿者,則不同的分配方案共有()A.60種 B.120種C.240種 D.480種8.已知圓,過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,若O為坐標原點,則最大值為()A.3 B.4C.5 D.69.函數在處有極小值5,則()A. B.C.或 D.或310.已知橢圓的左,右兩個焦點分別為,若橢圓C上存在一點A,滿足,則橢圓C的離心率的取值范圍是()A. B.C. D.11.有一組樣本數據、、、,由這組數據得到新樣本數據、、、,其中,為非零常數,則()A.兩組樣本數據的樣本平均數相同 B.兩組樣本數據的樣本標準差相同C.兩組樣本數據的樣本中位數相同 D.兩組樣本數據的樣本眾數相同12.已知函數在處取得極值,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.用數學歸納法證明等式:,驗證時,等式左邊________14.在△ABC中,角A,B,C所對的邊分別為a,b,c,設△ABC的面積為S,其中,,則S的最大值為______15.有公共焦點,的橢圓和雙曲線的離心率分別為,,點為兩曲線的一個公共點,且滿足,則的值為______16.已知平面和兩條不同的直線,則下列判斷中正確的序號是___________.①若,則;②若,則;③若,則;④若,則;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知中心在坐標原點O的橢圓,左右焦點分別為,,離心率為,M,N分別為橢圓的上下頂點,且滿足.(1)求橢圓方程;(2)已知點C滿足,點T在橢圓上(T異于橢圓的頂點),直線NT與以C為圓心的圓相切于點P,若P為線段NT的中點,求直線NT的方程;(3)過橢圓內的一點D(0,t),作斜率為k的直線l,與橢圓交于A,B兩點,直線OA,OB的斜率分別是,,若對于任意實數k,存在實數m,使得,求實數m的取值范圍.18.(12分)已知拋物線的焦點也是橢圓的一個焦點,如圖,過點任作兩條互相垂直的直線,,分別交拋物線于,,,四點,,分別為,的中點.(1)求的值;(2)求證:直線過定點,并求出該定點的坐標;(3)設直線交拋物線于,兩點,試求的最小值.19.(12分)如圖,在長方體中,,點E在棱上運動(1)證明:;(2)當E為棱的中點時,求直線與平面所成角的正弦值;(3)等于何值時,二面角的大小為?20.(12分)已知點及圓,點P是圓B上任意一點,線段的垂直平分線l交半徑于點T,當點P在圓上運動時,記點T的軌跡為曲線E(1)求曲線E的方程;(2)設存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點C、D、M、N,且四邊形是菱形,求該菱形周長的最大值21.(12分)已知函數.(1)若,討論函數的單調性;(2)當時,求在區間上的最小值和最大值.22.(10分)已知直線.(1)若,求直線與直線的交點坐標;(2)若直線與直線垂直,求a的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】過點且與原點O距離最遠的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠的直垂直于直線,,∴過點且與原點O距離最遠的直線的斜率為,∴過點且與原點O距離最遠的直線方程為:,即.故選:A2、C【解析】利用必要條件和充分條件的定義判斷.【詳解】A選項:,,,所以是的充分不必要條件,A錯誤;B選項:,,所以是的非充分非必要條件,B錯誤;C選項:,,,所以是必要不充分條件,C正確;D選項:,,,所以是的非充分非必要條件,D錯誤.故選:C.3、C【解析】作出輔助線,找到異面直線與所成角,進而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C4、D【解析】當時,不是遞增數列;當且時,是遞增數列,但是不成立,所以選D.考點:等比數列5、C【解析】按照比例關系,分層抽取.【詳解】由題意可知,所以應當抽取的一般員工人數為.故選:C6、D【解析】由分層抽樣各層成比例計算即可【詳解】設高二年級學生人數為,則,解得故選:D7、C【解析】先確定有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,然后利用組合,排列,乘法原理求得.【詳解】根據題意,有一個項目中分配2名志愿者,其余各項目中分配1名志愿者,可以先從5名志愿者中任選2人,組成一個小組,有種選法;然后連同其余三人,看成四個元素,四個項目看成四個不同的位置,四個不同的元素在四個不同的位置的排列方法數有4!種,根據乘法原理,完成這件事,共有種不同的分配方案,故選:C.【點睛】本題考查排列組合的應用問題,屬基礎題,關鍵是首先確定人數的分配情況,然后利用先選后排思想求解.8、C【解析】由題意,點P在圓C內,且最長弦的長度為直徑長10,則最短弦的長度為8,進而可得,所以點P的軌跡為以C為圓心,半徑為3的圓,從而即可求解.【詳解】解:由題意,圓,所以圓C是以為圓心,半徑為5的圓,因為過點P的直線l被圓C所截,且截得最長弦的長度與最短弦的長度比值為5∶4,所以點P在圓C內,且最長弦的長度為直徑長10,則最短弦的長度為8,所以由弦長公式有,所以點P的軌跡為以C為圓心,半徑為3的圓,所以,故選:C.9、A【解析】由題意條件和,可建立一個關于的方程組,解出的值,然后再將帶入到中去驗證其是否滿足在處有極小值,排除增根,即可得到答案.【詳解】由題意可得,則,解得,或.當,時,.由,得;由,得.則在上單調遞增,在上單調遞減,故在處有極大值5,不符合題意.當,時,.由,得;由,得.則在上單調遞減,在上單調遞增,故在處有極小值5,符合題意,從而故選:A.10、C【解析】根據題意可知當A為橢圓的上下頂點時,即可滿足橢圓C上存在一點A,使得,由此可得,解此不等式可得答案.【詳解】由橢圓的對稱性可知,當A為橢圓的上下頂點時,最大,故只需即可滿足題意,設O為坐標原點,則只需,即有,所以,解得,故選:C11、B【解析】利用平均數公式可判斷A選項;利用標準差公式可判斷B選項;利用中位數的定義可判斷C選項;利用眾數的定義可判斷D選項.【詳解】對于A選項,設數據、、、的平均數為,數據、、、的平均數為,則,A錯;對于B選項,設數據、、、的標準差為,數據、、、的標準差為,,B對;對于C選項,設數據、、、中位數為,數據、、、的中位數為,不妨設,則,若為奇數,則,;若為偶數,則,.綜上,,C錯;對于D選項,設數據、、、的眾數為,則數據、、、的眾數為,D錯.故選:B.12、B【解析】根據極值點處導函數為零可求解.【詳解】因為,則,由題意可知.經檢驗滿足題意故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據數學歸納法的步驟即可解答.【詳解】用數學歸納法證明等式:,驗證時,等式左邊=.故答案為:.14、【解析】應用余弦定理有,再由三角形內角性質及同角三角函數平方關系求,根據基本不等式求得,注意等號成立條件,最后利用三角形面積公式求S的最大值.【詳解】由余弦定理知:,而,所以,而,即,當且僅當時等號成立,又,當且僅當時等號成立.故答案為:15、4【解析】可設為第一象限的點,,,求出,,化簡即得解.【詳解】解:可設為第一象限的點,,,由橢圓定義可得,由雙曲線的定義可得,可得,,由,可得,即為,化為,則故答案為:416、②④【解析】根據直線與直線,直線與平面的位置關系依次判斷每個選項得到答案.詳解】若,則或,異面,或,相交,①錯誤;若,則,②正確;若,則或或與相交,③錯誤;若,則,④正確;故答案為:②④.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1(2)或(3)【解析】(1)由已知可得,,再結合可求出,從而可求得橢圓方程,(2)設直線,代入橢圓方程中消去,解方程可求出點的坐標,從而可得NT中點的坐標,而,可得解方程可求出的值,即可得到直線NT的方程,(3)設直線,代入橢圓方程中消去,利用根與系數的關系結合直線的斜率公式可得,再由,可求出m的取值范圍【小問1詳解】設(c,0),M(0,b),N(0,b),①,又②,③,由①②③得,所以橢圓方程為1.【小問2詳解】由題C,0),設直線聯立得,那么,N(0,)NT中點.所以,因為直線NT與以C為圓心的圓相切于點P,所以所以所以得,解得或所以直線NT為:或.【小問3詳解】設直線,聯立方程得設A(,),B,),則…由對任意k成立,得點D在橢圓內,所以,所以,所以m的取值范圍為.18、(1)(2)證明見解析,(3,0)(3)【解析】(1)求出橢圓的焦點坐標,從而可知拋物線的焦點坐標,進而可得的值;(2)首先設出直線的方程,聯立直線與拋物線的方程,得到,坐標,令,可得直線過點,再證明當,,,三點共線即可;(3)設出的直線方程,聯立直線與拋物線的方程,利用韋達定理找出根的關系,再利用兩點間的距離公式求出最小值即可.【小問1詳解】橢圓的焦點坐標為,由于拋物線的焦點也是橢圓的一個焦點,故,即,;小問2詳解】由(1)知,拋物線的方程為,設,,,,由題意,直線的斜率存在且設直線的方程為,代入可得,則,故,故的中點坐標為,由,設直線的方程為,代入可得,則,故,可得的中點坐標為,令得,此時,故直線過點,當時,,所以,,,三點共線,所以直線過定點.【小問3詳解】設,由題意直線的斜率存在,設直線的方程為,代入可得,則,,,故,當即直線垂直軸時,取得最小值.19、(1)證明見解析;(2);(3).【解析】(1)連接、,長方體、線面垂直的性質有、,再根據線面垂直的判定、性質即可證結論.(2)連接,由已知條件及勾股定理可得、,即可求、,等體積法求到面的距離,又直線與面所成角即為與面所成角,即可求線面角的正弦值.(3)由題設易知二面角為,過作于,連接,可得二面角平面角為,令,由長方體的性質及勾股定理構造方程求即可.【小問1詳解】由題設,連接、,又長方體中,∴為正方形,即,又面,面,即,∵,面,∴面,而面,即.【小問2詳解】連接,由E為棱的中點,則,∴,又,故,∴,又,,故,則,由,若到面的距離為,又,,∴,可得,又,∴直線與面所成角即為與面所成角為,故.【小問3詳解】二面角大小為,即二面角為,由長方體性質知:面,面,則,過作于,連接,又,∴面,則二面角平面角為,∴,令,則,故,而,,∴,∴,整理得,解得.∴時,二面角的大小為.20、(1)(2)【解析】(1)根據橢圓的定義和性質,建立方程求出,即可(2)設的方程為,,,,,設的方程為,,,,,分別聯立直線方程和橢圓方程,運用韋達定理和判別式大于0,以及弦長公式,求得,,運用菱形和橢圓的對稱性可得,關于原點對稱,結合菱形的對角線垂直和向量數量積為0,可得,設菱形的周長為,運用基本不等式,計算可得所求最大值【小問1詳解】點在線段的垂直平分線上,,又,曲線是以坐標原點為中心,和為焦點,長軸長為的橢圓設曲線的方程為,,,曲線的方程為【小問2詳解】設的方程為,,,,,設的方程為,,,,,聯立可得,由可得,化簡可得,①,,,同理可得,因為四邊形為菱形,所以,所以,又因為,所以,所以,關于原點對稱,又橢圓關于原點對稱,所以,關于原點對稱,,也關于原點對稱,所以且,所以,,,,因為四邊形為菱形,可得,即,即,即,可得,化簡可得,設菱形的周長為,則,當且僅當,即時等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 池州學院《應用多元統計分析》2023-2024學年第二學期期末試卷
- 河北石油職業技術大學《生物藥物制劑學》2023-2024學年第二學期期末試卷
- 中國礦業大學《診斷學2醫技》2023-2024學年第二學期期末試卷
- 西南政法大學《地下工程專業實驗》2023-2024學年第二學期期末試卷
- 河北資源環境職業技術學院《社會化媒體營銷》2023-2024學年第二學期期末試卷
- 山東現代學院《綜合英語(五)》2023-2024學年第二學期期末試卷
- 南京林業大學《美術史專題研究》2023-2024學年第二學期期末試卷
- 牡丹江大學《機電產品市場營銷學》2023-2024學年第二學期期末試卷
- 廣州華南商貿職業學院《醫學社會學》2023-2024學年第二學期期末試卷
- 健身銷售活動方案
- 04S519小型排水構筑物(含隔油池)圖集
- 2024至2030年中國無機陶瓷膜行業市場運營格局及投資前景預測報告
- 運用PDCA循環提高全麻患者體溫檢測率
- 人教版高中數學A版 必修第2冊《第十章 概率》大單元整體教學設計
- 敦煌的藝術智慧樹知到期末考試答案章節答案2024年北京大學
- 《管理會計》說課及試講
- 二手農機買賣合同協議書
- 北京市西城區2023-2024學年高一下學期期末考試化學試題
- 人音版八年級音樂上冊(簡譜)第三單元《天路》教學設計
- 2024年山東省聊城市冠縣中考一模英語試題(原卷版)
- 國開可編程控制器應用形考實訓任務六
評論
0/150
提交評論