2025屆廣東執信中學數學高二上期末經典試題含解析_第1頁
2025屆廣東執信中學數學高二上期末經典試題含解析_第2頁
2025屆廣東執信中學數學高二上期末經典試題含解析_第3頁
2025屆廣東執信中學數學高二上期末經典試題含解析_第4頁
2025屆廣東執信中學數學高二上期末經典試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東執信中學數學高二上期末經典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,且,則實數等于()A1 B.2C. D.2.已知向量,且與互相垂直,則k=()A. B.C. D.3.已知是虛數單位,則復數在復平面內對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知直三棱柱中,,,,則異面直線與所成角的余弦值為()A. B.C. D.5.關于實數a,b,c,下列說法正確的是()A.如果,則,,成等差數列B.如果,則,,成等比數列C.如果,則,,成等差數列D.如果,則,,成等差數列6.已知數列的前項和為,當時,()A.11 B.20C.33 D.357.直線被橢圓截得的弦長是A. B.C. D.8.已知直線與直線垂直,則()A. B.C. D.9.已知橢圓的右焦點和右頂點分別為F,A,離心率為,且,則n的值為()A.4 B.3C.2 D.10.已知橢圓:與雙曲線:有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則的最大值為()A. B.C. D.11.函數單調減區間是()A. B.C.和 D.12.若復數滿足,則復數對應的點的軌跡圍成圖形的面積等于()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,若三個數成等差數列,則_________;若三個數成等比數列,則__________14.已知在四面體ABCD中,,,則______15.已知實數x,y滿足方程,則的最大值為_________16.已知數列是公差不為0的等差數列,,且,,成等比數列.(1)求數列的通項公式;(2)設數列的前項和為,求.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)求證:直線與圓恒有兩個交點;(2)設直線與圓的兩個交點為、,求的取值范圍18.(12分)設橢圓方程為,短軸長,____________.請在①與雙曲線有相同的焦點,②離心率,③這三個條件中任選一個補充在上面的橫線上,完成以下問題.(1)求橢圓的標準方程;(2)求以點為中點的弦所在的直線方程.19.(12分)已知橢圓的焦點與雙曲線的焦點相同,且D的離心率為.(1)求C與D的方程;(2)若,直線與C交于A,B兩點,且直線PA,PB的斜率都存在.①求m的取值范圍.②試問這直線PA,PB的斜率之積是否為定值?若是,求出該定值;若不是,請說明理由.20.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點C到平面的距離;(2)線段上是否存在點F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.21.(12分)如圖,在四棱錐中P﹣ABCD中,底面ABCD是邊長為2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求證:PA⊥平面ABCD;(2)求平面PAD與平面PBC所成角的余弦值22.(10分)如圖所示在多面體中,平面,四邊形是正方形,,,,.(1)求證:直線平面;(2)求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用空間向量垂直的坐標表示計算即可得解【詳解】因向量,,且,則,解得,所以實數等于.故選:C2、C【解析】利用垂直的坐標表示列方程求解即可.【詳解】由與互相垂直得,解得故選:C.3、D【解析】根據復數的幾何意義即可確定復數所在象限【詳解】復數在復平面內對應的點為則復數在復平面內對應的點位于第四象限故選:D4、C【解析】作出輔助線,找到異面直線與所成角,進而利用余弦定理及勾股定理求出各邊長,最后利用余弦定理求出余弦值.【詳解】如圖所示,把三棱柱補成四棱柱,異面直線與所成角為,由勾股定理得:,,∴故選:C5、B【解析】根據給定條件結合取特值、推理計算等方法逐一分析各個選項并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數列,A不正確;對于B,若,則,即,,成等比數列,B正確;對于C,若,取,而,,,不成等差數列,C不正確;對于D,a,b,c是實數,若,顯然都可以為負數或者0,此時a,b,c無對數,D不正確.故選:B6、B【解析】由數列的性質可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數列的前n項和的性質,屬于基礎題.7、A【解析】直線y=x+1代入,得出關于x的二次方程,求出交點坐標,即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點睛】本題查直線與橢圓的位置關系,考查弦長的計算,屬于基礎題8、D【解析】根據互相垂直兩直線的斜率關系進行求解即可.【詳解】由,所以直線的斜率為,由,所以直線的斜率為,因為直線與直線垂直,所以,故選:D9、B【解析】根據橢圓方程及其性質有,求解即可.【詳解】由題設,,整理得,可得.故選:B10、B【解析】不妨設點為第一象限的交點,結合橢圓與雙曲線的定義得到,進而結合余弦定理得到,即,令然后結合三角函數即可求出結果.【詳解】不妨設點為第一象限的交點,則由橢圓的定義可得,由雙曲線的定義可得,所以,因此,即,所以,即,令因此,其中,所以當時,有最大值,最大值為,故選:B.【點睛】一、橢圓的離心率是橢圓最重要的幾何性質,求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據一個條件得到關于a,b,c的齊次式,結合b2=a2-c2轉化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)二、雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出a,c,代入公式;②只需要根據一個條件得到關于a,b,c的齊次式,結合b2=c2-a2轉化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉化為關于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍)11、B【解析】根據函數求導,然后由求解.【詳解】因為函數,所以,由,解得,所以函數的單調遞減區間是,故選:B12、D【解析】利用復數的幾何意義,即可判斷軌跡圖形,再求面積.【詳解】復數滿足,表示復數對應的點的軌跡是以點為圓心,半徑為3的圓,所以圍成圖形的面積等于.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、①.4②.【解析】由等差中項與等比中項計算即可.【詳解】若a,b,c三個數成等差數列.所以.若a,b,c三個數成等比數列.所以故答案為:4,.14、24【解析】由線段的空間關系有,應用向量數量積的運算律及已知條件即可求.【詳解】由題設,可得如下四面體示意圖,則,又,,所以.故答案為:2415、##【解析】設,根據直線與圓的位置關系即可求出【詳解】由于,設,所以點既在直線上,又在圓上,即直線與圓有交點,所以,,即故答案為:16、(1);(2).【解析】(1)根據,且,,成等比數列,利用等比中項由,求得公差即可.(2)由(1)得到,再利用裂項相消法求解.【詳解】(1)設數列的公差為d,因為,且,,成等比數列,所以,即,解得或(舍去),所以數列的通項公式;(2)由(1)知:,所以.【點睛】方法點睛:求數列的前n項和的方法(1)公式法:①等差數列的前n項和公式,②等比數列的前n項和公式;(2)分組轉化法:把數列的每一項分成兩項或幾項,使其轉化為幾個等差、等比數列,再求解(3)裂項相消法:把數列的通項拆成兩項之差求和,正負相消剩下首尾若干項(4)倒序相加法:把數列分別正著寫和倒著寫再相加,即等差數列求和公式的推導過程的推廣(5)錯位相減法:如果一個數列的各項是由一個等差數列和一個等比數列對應項之積構成的,則這個數列的前n項和用錯位相減法求解.(6)并項求和法:一個數列的前n項和中,可兩兩結合求解,則稱之為并項求和.形如an=(-1)nf(n)類型,可采用兩項合并求解三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據直線的方程可得直線經過定點,而點到圓心的距離小于半徑,故點在圓的內部,由此即可證明結果(2)由圓的性質可知,當過圓心時,取最大值,當和過的直徑垂直時,取最小值,由此即可求出結果.【小問1詳解】證明:由于直線,即令,解得,所以恒過點,所以,所以點在圓內,所以直線與圓恒有兩個交點;【小問2詳解】解:當過圓心時,取最大值,即圓的直徑,由圓的半徑,所以的最大值為;當和過的直徑垂直時,取最小值,此時圓心到的距離,所以,故的最小值為綜上,的取值范圍.18、(1)答案見解析,.(2).【解析】(1)若選①:求得雙曲線得雙曲線的焦點得出橢圓的,再由,可求得橢圓的標準方程;若選②:根據已知條件和橢圓的離心率可求得,從而得橢圓的標準方程;若選③:由已知建立方程,求解可求得,從而得橢圓的標準方程.(2)設直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設直線與橢圓的交點為,由根與系數的關系和中點坐標公式可求得答案.【小問1詳解】解:若選①:由雙曲線得雙曲線的焦點和,因為橢圓與雙曲線有相同的焦點,所以橢圓的,又,所以,所以,所以橢圓的標準方程為;若選②:因為,所以,又離心率,所以,即,解得,所以橢圓的標準方程為;若選③:因為,所以,即,又,解得,,所以橢圓的標準方程為;【小問2詳解】解:由題意得直線的斜率必存在,設直線的斜率為k,所求的直線方程為,代入橢圓的方程并整理得,設直線與橢圓的交點為,則,因為點為AB中點,所以,解得,所以所求的直線方程為,即.19、(1)C:;D:;(2)①且;②見解析.【解析】(1)根據D的離心率為,求出從而求出雙曲線的焦點,再由橢圓的焦點與雙曲線的焦點相同,即可求出,即可求出C與D的方程;(2)①根據題意容易得出,然后聯立方程,消元,利用即可求出m的取值范圍;②設,由①得:,計算出,判斷其是否為定值即可.【詳解】解:(1)因為D的離心率為,即,解得:,所以D的方程為:;焦點坐標為,又因橢圓的焦點與雙曲線的焦點相同,所以,所以,所以C的方程為:;(2)①如圖:因為直線與C交于A,B兩點,且直線PA,PB的斜率都存在,所以,聯立,消化簡得:,所以,解得,所以且;②設,由①得:,,所以,故直線PA,PB的斜率之積不是是定值.【點睛】本題考查了求橢圓與雙曲線的方程、直線與橢圓的位置關系及橢圓中跟定直有關的問題,難度較大.20、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標系,求得平面向量的法向量和相應點的坐標,利用點面距離公式即可求得點面距離(2)假設滿足題意的點存在且滿足,由題意得到關于的方程,解方程即可確定滿足題意的點是否存在【小問1詳解】解:如圖所示,取中點,連結,,因為三角形是等腰直角三角形,所以,因為面面,面面面,所以平面,又因為,所以四邊形是矩形,可得,則,建立如圖所示的空間直角坐標系,則:據此可得,設平面的一個法向量為,則,令可得,從而,又,故求點到平面的距離【小問2詳解】解:假設存在點,,滿足題意,點在線段上,則,即:,,,,,據此可得:,,從而,,,,設與平面所成角所成的角為,則,整理可得:,解得:或(舍去)據此可知,存在滿足題意的點,點為的中點,即21、(1)證明見解析;(2).【解析】(1)根據線面垂直的判定定理來證得平面.(2)建立空間直角坐標系,利用向量法來求得平面與平面所成角的余弦值.【小問1詳解】由于平面,所以,由于,所以平面.【小問2詳解】建立如圖所示空間直角坐標系,平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論