




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆新疆庫(kù)車(chē)縣烏尊鎮(zhèn)烏尊中學(xué)數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在等腰中,在線段斜邊上任取一點(diǎn),則線段的長(zhǎng)度大于的長(zhǎng)度的概率()A. B.C. D.2.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)M是雙曲線右支上一點(diǎn),,且,則雙曲線的離心率為()A. B.C. D.3.在平面直角坐標(biāo)系中,線段的兩端點(diǎn),分別在軸正半軸和軸正半軸上滑動(dòng),若圓上存在點(diǎn)是線段的中點(diǎn),則線段長(zhǎng)度的最小值為()A.4 B.6C.8 D.104.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計(jì)算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵中,M是的中點(diǎn),,,,若,則()A. B.C. D.5.已知拋物線C:,焦點(diǎn)為F,點(diǎn)到在拋物線上,則()A.3 B.2C. D.6.已知點(diǎn)分別是橢圓的左、右焦點(diǎn),點(diǎn)P在此橢圓上,,則的面積等于A. B.C. D.7.瑞士著名數(shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心位于同一直線上,這條直線被后人稱為三角形的“歐拉線”.若滿足,頂點(diǎn),且其“歐拉線”與圓相切,則:①.圓M上的點(diǎn)到原點(diǎn)的最大距離為②.圓M上存在三個(gè)點(diǎn)到直線的距離為③.若點(diǎn)在圓M上,則的最小值是④.若圓M與圓有公共點(diǎn),則上述結(jié)論中正確的有()個(gè)A.1 B.2C.3 D.48.已知拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,且該拋物線的準(zhǔn)線與雙曲線(,)的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.4C.6 D.99.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)中相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)10.已知命題:,使;命題:,都有,則下列結(jié)論正確的是()A.命題“”是真命題: B.命題“”是假命題:C.命題“”是假命題: D.命題“”是假命題11.等差數(shù)列中,已知,,則的前項(xiàng)和的最小值為()A. B.C. D.12.觀察數(shù)列,(),,()的特點(diǎn),則括號(hào)中應(yīng)填入的適當(dāng)?shù)臄?shù)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓錐的側(cè)面積為,若其過(guò)軸的截面為正三角形,則該圓錐的母線的長(zhǎng)為_(kāi)__________.14.將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照以上排列的規(guī)律,第行從左向右的第2個(gè)數(shù)為_(kāi)___________.15.=______.16.如圖所示,高爾頓釘板是一個(gè)關(guān)于概率的模型,每一黑點(diǎn)表示釘在板上的一顆釘子,它們彼此的距離均相等,上一層的每一顆的水平位置恰好位于下一層的兩顆正中間.小球每次下落時(shí),將隨機(jī)的向兩邊等概率的落下.當(dāng)有大量的小球都落下時(shí),最終在釘板下面不同位置收集到小球.現(xiàn)有5個(gè)小球從正上方落下,則恰有3個(gè)小球落到2號(hào)位置的概率是______三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知圓,其圓心在直線上.(1)求的值;(2)若過(guò)點(diǎn)的直線與相切,求的方程.18.(12分)已知橢圓與拋物線有一個(gè)相同的焦點(diǎn),且該橢圓的離心率為,(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程:(Ⅱ)求過(guò)點(diǎn)的直線與該橢圓交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求的面積.19.(12分)已知函數(shù).(1)求曲線在處的切線方程;(2)求曲線過(guò)點(diǎn)的切線方程.20.(12分)已知橢圓經(jīng)過(guò)點(diǎn),橢圓E的一個(gè)焦點(diǎn)為(1)求橢圓E的方程;(2)若直線l過(guò)點(diǎn)且與橢圓E交于A,B兩點(diǎn).求的最大值21.(12分)如圖,在四棱柱中,,,,四邊形為菱形,在平面ABCD內(nèi)的射影O恰好為AD的中點(diǎn),M為AB的中點(diǎn).(1)求證:平面;(2)求平面與平面夾角的余弦值.22.(10分)已知直線方程為(1)若直線的傾斜角為,求的值;(2)若直線分別與軸、軸的負(fù)半軸交于、兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最小值及此時(shí)直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】利用幾何概型的長(zhǎng)度比值,即可計(jì)算.【詳解】設(shè)直角邊長(zhǎng),斜邊,則線段的長(zhǎng)度大于的長(zhǎng)度的概率.故選:C2、A【解析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【詳解】因?yàn)?,,所以在中,邊上的中線等于的一半,所以.因?yàn)?,所以可設(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A3、C【解析】首先求點(diǎn)的軌跡,將問(wèn)題轉(zhuǎn)化為兩圓有交點(diǎn),即根據(jù)兩圓的位置關(guān)系,求參數(shù)的取值范圍.【詳解】設(shè),,的中點(diǎn)為,則,故點(diǎn)的軌跡是以原點(diǎn)為圓心,為半徑的圓,問(wèn)題轉(zhuǎn)化為圓與圓有交點(diǎn),所以,,即,解得:,所以線段長(zhǎng)度的最小值為.故選:C4、C【解析】建立坐標(biāo)系,坐標(biāo)表示向量,求出點(diǎn)坐標(biāo),進(jìn)而求出結(jié)果.【詳解】以為坐標(biāo)原點(diǎn),,,的方向分別為x,y,z軸的正方向建立空間直角坐標(biāo)系.不妨令,則,,,,,.因?yàn)?,所以,則,,,,則解得,,,故.故選:C5、D【解析】利用拋物線的定義求解.【詳解】因?yàn)辄c(diǎn)在拋物線上,,解得,利用拋物線的定義知故選:D6、B【解析】根據(jù)橢圓標(biāo)準(zhǔn)方程,可得,結(jié)合定義及余弦定理可求得值,由及三角形面積公式即可求解.【詳解】橢圓則,所以,則由余弦定理可知代入化簡(jiǎn)可得,則,故選:B.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì)的簡(jiǎn)單應(yīng)用,正弦定理與余弦定理的簡(jiǎn)單應(yīng)用,三角形面積公式的用法,屬于基礎(chǔ)題.7、A【解析】由題意求出的垂直平分線可得△的歐拉線,再由圓心到直線的距離求得,得到圓的方程,求出圓心到原點(diǎn)的距離,加上半徑判斷A;求出圓心到直線的距離判斷B;再由的幾何意義,即圓上的點(diǎn)與定點(diǎn)連線的斜率判斷C;由兩個(gè)圓有公共點(diǎn)可得圓心距與兩個(gè)半徑之間的關(guān)系,求得的取值范圍判斷D【詳解】由題意,△的歐拉線即的垂直平分線,,,的中點(diǎn)坐標(biāo)為,,則的垂直平分線方程為,即由“歐拉線”與圓相切,到直線的距離,,則圓的方程為:,圓心到原點(diǎn)的距離為,則圓上的點(diǎn)到原點(diǎn)的最大距離為,故①錯(cuò)誤;圓心到直線的距離為,圓上存在三個(gè)點(diǎn)到直線的距離為,故②正確;的幾何意義:圓上的點(diǎn)與定點(diǎn)連線的斜率,設(shè)過(guò)與圓相切的直線方程為,即,由,解得,的最小值是,故③錯(cuò)誤;的圓心坐標(biāo),半徑為,圓的的圓心坐標(biāo)為,半徑為,要使圓與圓有公共點(diǎn),則圓心距的范圍為,,,解得,故④錯(cuò)誤故選:A8、A【解析】由題意求得拋物線的準(zhǔn)線方程為,進(jìn)而得到準(zhǔn)線與雙曲線C的漸近線圍成的三角形面積,求得,再結(jié)合和離心率的定義,即可求解.【詳解】由題意,拋物線上一橫坐標(biāo)為5的點(diǎn)到焦點(diǎn)的距離為6,根據(jù)拋物線定義,可得,即,所以拋物線的準(zhǔn)線方程為,又由雙曲線C的兩條漸近線方程為,則拋物線的準(zhǔn)線與雙曲線C的兩條漸近線圍成的三角形面積為,解得,又由,可得,所以雙曲線C的離心率.故選:A.9、C【解析】根據(jù)莖葉圖中數(shù)據(jù)的波動(dòng)情況,可直接判斷方差不同;根據(jù)莖葉圖中的數(shù)據(jù),分別計(jì)算極差、中位數(shù)、平均數(shù),即可得出結(jié)果.【詳解】由莖葉圖可得:甲的數(shù)據(jù)更集中,乙的數(shù)據(jù)較分散,所以甲與乙的方差不同;甲的極差為;乙的極差為,所以甲與乙的極差不同;甲的中位數(shù)為,乙的中位數(shù)為,所以中位數(shù)不同;甲的平均數(shù)為,乙的平均數(shù)為,所以甲、乙的平均數(shù)相同;故選:C.10、B【解析】根據(jù)正弦函數(shù)的性質(zhì)判斷命題為假命題,由判斷命題為真命題,從而得出答案.【詳解】因?yàn)榈闹涤驗(yàn)?,所以命題為假命題因?yàn)椋悦}為真命題則命題“”是假命題,命題“”是假命題,命題“”是真命題,命題“”是真命題故選:B11、B【解析】由等差數(shù)列的性質(zhì)將轉(zhuǎn)化為,而,可知數(shù)列是遞增數(shù),從而可求得結(jié)果【詳解】∵等差數(shù)列中,,∴,即.又,∴的前項(xiàng)和的最小值為故選:B12、D【解析】利用觀察法可得,即得.【詳解】由題可得數(shù)列的通項(xiàng)公式為,∴.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用圓錐的結(jié)構(gòu)特征及側(cè)面積公式即得.【詳解】設(shè)圓錐的底面半徑為r,圓錐的母線為l,又圓錐過(guò)軸的截面為正三角形,圓錐的側(cè)面積為,∴,∴.故答案為:.14、【解析】通過(guò)觀察、分析、歸納,找出規(guī)律運(yùn)算求解即可【詳解】前行共有正整數(shù)個(gè),即個(gè),因此第行第個(gè)數(shù)是全體正整數(shù)中第個(gè),即為故答案為:15、【解析】根據(jù)被積函數(shù)()表示一個(gè)半圓,利用定積分的幾何意義即可得解.【詳解】被積函數(shù)()表示圓心為,半徑為2的圓的上半部分,所以.故答案為:.【點(diǎn)睛】本題考查了利用定積分的幾何意義來(lái)求定積分,在用該方法求解時(shí)需注意被積函數(shù)的在給定區(qū)間內(nèi)的函數(shù)值符號(hào),本題屬于中檔題.16、【解析】先研究一個(gè)小球從正上方落下的情況,從而可求出一個(gè)小球從正上方落下落到2號(hào)位置的概率,進(jìn)而可求出5個(gè)小球從正上方落下,則恰有3個(gè)小球落到2號(hào)位置的概率【詳解】如圖所示,先研究一個(gè)小球從正上方落下的情況,11,12,13,14指小球第2層到第3層的線路圖,以此類(lèi)推,小球所有的路線情況如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16種情況,其中落入2號(hào)位置的有4種,所以每個(gè)球落入2號(hào)位置的概率為,所以5個(gè)小球從正上方落下,則恰有3個(gè)小球落到2號(hào)位置的概率為,故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)或【解析】(1)將圓的一般方程化為標(biāo)準(zhǔn)方程,求出圓心,代入直線方程即可求解.(2)設(shè)直線的方程為:,利用圓心到直線的距離即可求解.【小問(wèn)1詳解】圓的標(biāo)準(zhǔn)方程為:,所以,圓心為由圓心在直線上,得.所以,圓的方程為:【小問(wèn)2詳解】由題意可知直線的斜率存在,設(shè)直線的方程為:,即由于直線和圓相切,得解得:所以,直線方程為:或.18、(Ⅰ);(Ⅱ)【解析】(Ⅰ)根據(jù)題意可以求出橢圓的焦點(diǎn),再根據(jù)橢圓的離心率公式,求出的值,然后結(jié)合橢圓的關(guān)系求出,最后寫(xiě)出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)根據(jù)平面向量共線定理可以得出A,B兩點(diǎn)橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再設(shè)出直線AB方程與橢圓方程聯(lián)立,利用根與系數(shù)關(guān)系求出直線AB的斜率,最后根據(jù)三角形面積結(jié)合根與系數(shù)關(guān)系求出的面積.【詳解】(Ⅰ)由題意,設(shè)橢圓的標(biāo)準(zhǔn)方程為,由題意可得,又,,所以橢圓的標(biāo)準(zhǔn)方程為(Ⅱ)設(shè),,由得:,驗(yàn)證易知直線AB的斜率存在,設(shè)直線AB的方程為聯(lián)立橢圓方程,得:,整理得:,得:,將代入得,所以的面積.【點(diǎn)睛】本題考查了求橢圓的標(biāo)準(zhǔn)方程,考查了利用一元二次方程根與系數(shù)關(guān)系求直線斜率和三角形面積問(wèn)題,考查了數(shù)學(xué)運(yùn)算能力.19、(1);(2).【解析】(1)首先求導(dǎo)函數(shù),計(jì)算,接著根據(jù)導(dǎo)數(shù)的幾何意義確定切線的斜率,最后根據(jù)點(diǎn)斜式寫(xiě)出直線方程即可;(2)因?yàn)辄c(diǎn)不在曲線上,所以設(shè)切點(diǎn)為,根據(jù)導(dǎo)數(shù)的幾何意義寫(xiě)出切線的方程,代入點(diǎn)求解,最后寫(xiě)出切線方程即可.【詳解】(1).,.所以曲線在處的切線方程為,即(2)設(shè)切點(diǎn)為,則曲線在點(diǎn)處的切線方程為,代入點(diǎn)得,,.所以曲線過(guò)點(diǎn)的切線方程為,即.20、(1);(2).【解析】(1)利用代入法,結(jié)合焦點(diǎn)的坐標(biāo)、橢圓中的關(guān)系進(jìn)行求解即可;(2)根據(jù)直線l是否存在斜率分類(lèi)討論,結(jié)合一元二次方程根的判別式、根與系數(shù)關(guān)系、弦長(zhǎng)公式、基本不等式進(jìn)行求解即可.【小問(wèn)1詳解】依題意:,解得,,∴橢圓E的方程為;【小問(wèn)2詳解】當(dāng)直線l的斜率存在時(shí),設(shè),,由得由得.由,得當(dāng)且僅當(dāng),即時(shí)等號(hào)成立當(dāng)直線l的斜率不存在時(shí),,∴的最大值為21、(1)證明見(jiàn)解析(2)【解析】(1)先證明,,即可證明平面;(2)建立空間直角坐標(biāo)系,利用向量法求解即可.【小問(wèn)1詳解】因?yàn)镺為在平面ABCD內(nèi)的射影,所以平面ABCD,因?yàn)槠矫鍭BCD,所以.如圖,連接BD,在中,.設(shè)CD的中點(diǎn)為P,連接BP,因?yàn)?,,,所以,且,則.因?yàn)椋?,易知,所?因?yàn)槠矫?,平面,,所以平?【小問(wèn)2詳解】由(1)知平面ABCD,所以可以點(diǎn)O為坐標(biāo)原點(diǎn),以O(shè)A,,所在直線分別為x,z,以平面ABCD內(nèi)過(guò)點(diǎn)O且垂直于OA的直線為y軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,,,設(shè)平面的法向量為,,,則可取平面的一個(gè)法向量為.設(shè)平面的法向量為,,,則令,得平面
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年建筑木工制品項(xiàng)目市場(chǎng)調(diào)查研究報(bào)告
- 智能氣體流量控制系統(tǒng)行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 智能電餅鐺觸控版企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 智能電飯煲設(shè)計(jì)行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 熟食文化沙龍活動(dòng)企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 玫瑰檸檬蜂蜜美白酒企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 環(huán)保休閑躺椅墊企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 智能病房環(huán)境控制系統(tǒng)行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 公司社保和合同范例
- 住房建設(shè)工程合同范例
- 2025屆廣東省佛山市高三下學(xué)期教學(xué)質(zhì)量檢測(cè)(二)物理試題及答案
- 2025年初中數(shù)學(xué)聯(lián)考試題及答案
- 《綜合保稅區(qū)發(fā)展戰(zhàn)略》課件
- 2025年四川省成都市成華區(qū)中考二診英語(yǔ)試題(原卷版+解析版)
- 2025第十三屆貴州人才博覽會(huì)遵義市事業(yè)單位人才引進(jìn)47人筆試備考試題及答案解析
- 2025合肥市輔警考試試卷真題
- 《出師表》與《杜正獻(xiàn)公》對(duì)比閱讀訓(xùn)練
- 《我國(guó)中小企業(yè)薪酬激勵(lì)機(jī)制研究-以鄭州宇通客車(chē)公司為例》9700字
- 幕墻鋁板合同協(xié)議
- 抽樣計(jì)劃考試試題及答案
- 2025年上半年四川成都農(nóng)業(yè)科技職業(yè)學(xué)院招聘工作人員16人重點(diǎn)基礎(chǔ)提升(共500題)附帶答案詳解
評(píng)論
0/150
提交評(píng)論