2025屆黑龍江省綏化市青岡縣一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
2025屆黑龍江省綏化市青岡縣一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
2025屆黑龍江省綏化市青岡縣一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
2025屆黑龍江省綏化市青岡縣一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
2025屆黑龍江省綏化市青岡縣一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆黑龍江省綏化市青岡縣一中高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓C的焦點為,過F2的直線與C交于A,B兩點.若,,則C的方程為A. B.C. D.2.已知集合,,則()A. B.C. D.3.若動圓的圓心在拋物線上,且恒過定點,則此動圓與直線()A.相交 B.相切C.相離 D.不確定4.已知直線與直線平行,則實數(shù)a值為()A.1 B.C.1或 D.5.音樂與數(shù)學(xué)有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼模玫健拔ⅰ保拔ⅰ苯?jīng)過一次“益”,頻率變?yōu)樵瓉淼模玫健吧獭薄来艘?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列6.已知向量,,且,則值是()A. B.C. D.7.已知,若是函數(shù)一個零點,則的值為()A.0 B.C.1 D.8.已知拋物線的焦點為,為拋物線上第一象限的點,若,則直線的傾斜角為()A. B.C. D.9.已知直線與圓交于A,B兩點,O為原點,且,則實數(shù)m等于()A. B.C. D.10.直線(t為參數(shù))被圓所截得的弦長為()A. B.C. D.11.直線與圓相交于點,點是坐標(biāo)原點,若是正三角形,則實數(shù)的值為A.1 B.-1C. D.12.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為橢圓上的一點,,分別為圓和圓上的點,則的最小值為______14.若函數(shù),則_______15.已知,,且與的夾角為鈍角,則x的取值范圍是___.16.空間直角坐標(biāo)系中,點,的坐標(biāo)分別為,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓M的圓心在直線上,且圓心在第一象限,半徑為3,圓M被直線截得的弦長為4.(1)求圓M的方程;(2)設(shè)P是直線上的動點,證明:以MP為直徑的圓必過定點,并求所有定點的坐標(biāo).18.(12分)雙曲線(,)的離心率,且過點.(1)求a,b的值;(2)求與雙曲線C有相同漸近線,且過點的雙曲線的標(biāo)準(zhǔn)方程.19.(12分)已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,求數(shù)列的前項和.20.(12分)某校在全體同學(xué)中隨機(jī)抽取了100名同學(xué),進(jìn)行體育鍛煉時間的專項調(diào)查.將調(diào)查數(shù)據(jù)按平均每天鍛煉時間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時間不少于60分鐘的同學(xué)定義為鍛煉達(dá)標(biāo),平均每天體育鍛煉時間少于60分鐘的同學(xué)定義為鍛煉不達(dá)標(biāo)(1)求a的值,并估計該校同學(xué)平均每天體育鍛煉時間的中位數(shù);(2)在樣本中,對平均每天體育鍛煉時間不達(dá)標(biāo)的同學(xué),按分層抽樣的方法抽取6名同學(xué)了解不達(dá)標(biāo)的原因,再從這6名同學(xué)中隨機(jī)抽取2名進(jìn)行調(diào)研,求這2名同學(xué)中至少有一名每天體育鍛煉時間(單位:分鐘)在內(nèi)的概率21.(12分)已知函數(shù),(1)討論的單調(diào)性;(2)若時,對任意都有恒成立,求實數(shù)的最大值22.(10分)已知直線,圓.(1)求證:直線l恒過定點;(2)若直線l的傾斜角為,求直線l被圓C截得的弦長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補,,兩式消去,得,解得.所求橢圓方程為,故選B【點睛】本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng)2、A【解析】由已知得,因為,所以,故選A3、B【解析】根據(jù)題意得定點為拋物線的焦點,為準(zhǔn)線,進(jìn)而根據(jù)拋物線的定義判斷即可.【詳解】解:由題知,定點為拋物線的焦點,為準(zhǔn)線,因為動圓的圓心在拋物線上,且恒過定點,所以根據(jù)拋物線的定義得動圓的圓心到直線的距離等于圓心到定點,即圓心到直線的距離等于動圓的半徑,所以動圓與直線相切.故選:B4、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A5、C【解析】根據(jù)文化知識,分別求出相對應(yīng)的頻率,即可判斷出結(jié)果【詳解】設(shè)“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點睛】本題考查等比數(shù)列的定義,考查學(xué)生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題6、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因為向量,,所以,,因為,所以,解得:,故選:A.7、A【解析】首先根據(jù)題意求出,然后設(shè)函數(shù),利用以及的單調(diào)性,并結(jié)合對數(shù)運算即可求解.【詳解】由題意可知,,所以,不妨設(shè),(),故,從而,易知在上單調(diào)遞增,故,即,從而.故選:A.8、C【解析】設(shè)點,其中,,根據(jù)拋物線的定義求得點的坐標(biāo),即可求得直線的斜率,即可得解.【詳解】設(shè)點,其中,,則,可得,則,所以點,故,因此,直線的傾斜角為.故選:C.9、A【解析】根據(jù)給定條件求出,再求出圓O到直線l的距離即可計算作答.【詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點O到直線l的距離,因此,,解得,所以實數(shù)m等于.故選:A10、C【解析】求得直線普通方程以及圓的直角坐標(biāo)方程,利用弦長公式即可求得結(jié)果.【詳解】因為直線的參數(shù)方程為:(t為參數(shù)),故其普通方程為,又,根據(jù),故可得,其表示圓心為,半徑的圓,則圓心到直線的距離,則該直線截圓所得弦長為.故選:C.11、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標(biāo),設(shè)圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C12、D【解析】由向量線性運算得,利用數(shù)量積的定義和運算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】根據(jù)橢圓的定義、點到圓上距離的最小值,即可得到答案;【詳解】設(shè)為橢圓的左右焦點,則,等號成立,當(dāng)共線,共線,的最小值為,故答案為:14、1【解析】先對函數(shù)求導(dǎo),然后令可求出的值【詳解】因為,所以,則,解得故答案為:15、∪【解析】根據(jù)題意得出且與不共線,然后根據(jù)向量數(shù)量積的定義及向量共線的條件求出x的取值范圍.【詳解】∵與的夾角為鈍角,且與不共線,即,且,解得,且,∴x的取值范圍是∪.故答案為:∪.16、【解析】利用空間直角坐標(biāo)系中兩點間的距離公式計算即得.【詳解】在空間直角坐標(biāo)系中,因點,的坐標(biāo)分別為,,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,定點和.【解析】(1)根據(jù)給定條件設(shè)出圓心坐標(biāo),再結(jié)合點到直線距離公式計算作答.(2)設(shè)點,求出圓的方程,結(jié)合方程求出其定點.【小問1詳解】因圓M的圓心在直線上,且圓心在第一象限,設(shè)圓心,且,圓心到直線的距離為,又由解得,從而,而,解得,所以圓M的方程為.【小問2詳解】由(1)知:,設(shè)點,,設(shè)動圓上任意一點當(dāng)與點P,M都不重合時,,有,當(dāng)與點P,M之一重合時,對應(yīng)為零向量,也成立,,,,化簡得:,由,解得或,所以以MP為直徑的圓必過定點和.【點睛】方法點睛:待定系數(shù)法求圓的方程,由題設(shè)條件,列出等式,求出相關(guān)量.一般地,與圓心和半徑有關(guān),選擇標(biāo)準(zhǔn)式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應(yīng)該有三個獨立等式18、(1),(2)【解析】(1)根據(jù)已知條件建立關(guān)于a、b、c的方程組可解;(2)巧設(shè)與已知雙曲線同漸近線的雙曲線方程為可得.【小問1詳解】因為離心率,所以.又因為點在雙曲線C上,所以.聯(lián)立上述方程,解得,,即,.【小問2詳解】設(shè)所求雙曲線的方程為,由雙曲線經(jīng)過點,得,即.所以雙曲線的方程為,其標(biāo)準(zhǔn)方程為.19、(1)(2)【解析】(Ⅰ)將數(shù)列中的項用和表示,根據(jù)等比數(shù)列的性質(zhì)可得到關(guān)于的一元二次方程可求得的值,即可得到數(shù)列的通項公式;(Ⅱ)根據(jù)(Ⅰ)可求得的通項公式,用分組求和法可得其前項和.試題解析:(Ⅰ)設(shè)等差數(shù)列的公差為,因,且,,成等比數(shù)列,即,,成等比數(shù)列,所以有,即,解得或(舍去),所以,,數(shù)列的通項公式為.(Ⅱ)由(Ⅰ)知,所以.點睛:本題主要考查了等差數(shù)列,等比數(shù)列的概念,以及數(shù)列的求和,屬于高考中常考知識點,難度不大;常見的數(shù)列求和的方法有公式法即等差等比數(shù)列求和公式,分組求和類似于,其中和分別為特殊數(shù)列,裂項相消法類似于,錯位相減法類似于,其中為等差數(shù)列,為等比數(shù)列等.20、(1),中位數(shù)為64;(2).【解析】(1)由頻率和為1求參數(shù)a,根據(jù)中位數(shù)的性質(zhì),結(jié)合頻率直方圖求中位數(shù).(2)首先由分層抽樣求6名同學(xué)的分布情況,再應(yīng)用列舉法求概率.【詳解】(1)由題設(shè),,可得,∴中位數(shù)應(yīng)在之間,令中位數(shù)為,則,解得.∴該校同學(xué)平均每天體育鍛煉時間的中位數(shù)為64.(2)由題設(shè),抽取6名同學(xué)中1名在,2名在,3名在,若1名在為,2名在為,3名在為,∴隨機(jī)抽取2名的可能情況有共15種,其中至少有一名在內(nèi)的共12種,∴這2名同學(xué)中至少有一名每天體育鍛煉時間(單位:分鐘)在內(nèi)的概率為.21、(1)答案見解析;(2).【解析】(1)利用導(dǎo)數(shù)與單調(diào)性的關(guān)系分類討論即得;(2)由題可得在上恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)的最值即可.【小問1詳解】的定義域為,且當(dāng)時,顯然,在定義域上單調(diào)遞增;當(dāng)時,令,得則有:極大值即在上單調(diào)遞增,在上單調(diào)遞減,綜上所述,當(dāng)時,在定義域上單調(diào)遞增;當(dāng)時,在上單調(diào)遞增

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論