




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆黑龍江省綏濱縣第一中學高二上數學期末質量跟蹤監視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.平面的法向量為,平面的法向量為,則下列命題正確的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直2.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.3.如果向量,,共面,則實數的值是()A. B.C. D.4.過點且與原點距離最大的直線方程是()A. B.C. D.5.已知全集,,()A. B.C. D.6.已知數列通項公式,則()A.6 B.13C.21 D.317.如圖,在平行六面體中,M為與的交點,若,,,則下列向量中與相等的向量是()A. B.C. D.8.集合,則集合A的子集個數為()A.2個 B.4個C.8個 D.16個9.已知是等比數列,,,則()A. B.C. D.10.橢圓的焦點坐標是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)11.為調查參加考試的高二級1200名學生的成績情況,從中抽查了100名學生的成績,就這個問題來說,下列說法正確的是()A.1200名學生是總體 B.每個學生是個體C.樣本容量是100 D.抽取的100名學生是樣本12.雙曲線的左焦點到其漸近線的距離是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點,且周長最小的圓的標準方程為______14.曲線在點處的切線方程為_____________.15.已知函數,若過點存在三條直線與曲線相切,則的取值范圍為___________16.命題“x≥1,x2-2x+4≥0”的否定為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點.(1)求證:平面;(2)求證:平面.18.(12分)已知等比數列滿足(1)求的通項公式;(2)記的前n項和為,證明:,,成等差數列19.(12分)已知直線l過點A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點P,Q,且|PQ|=8,求圓C方程20.(12分)已知圓.(1)過點作圓的切線,求切線的方程;(2)若直線過點且被圓截得的弦長為2,求直線的方程.21.(12分)北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發布會,某公司為了競標配套活動的相關代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.(1)據市場調查,若價格每提高1元,銷售量將相應減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術革新和營銷策略改革,并提高定價到x元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當該商品改革后的銷售量a至少應達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.22.(10分)已知橢圓:的長軸長為6,離心率為,長軸的左,右頂點分別為A,B(1)求橢圓的方程;(2)已知過點的直線交橢圓于M、N兩個不同的點,直線AM,AN分別交軸于點S、T,記,(為坐標原點),當直線的傾斜角為銳角時,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據可判斷兩平面垂直.【詳解】因為,所以,所以,垂直.故選:B.2、D【解析】由題設易知四邊形為矩形,可得,結合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關鍵點點睛:由橢圓的對稱性及矩形性質可得,由已知條件得到,進而得到橢圓參數的齊次式求離心率范圍.3、B【解析】設,由空間向量的坐標運算可得出方程組,即可解得的值.【詳解】由于向量,,共面,設,可得,解得.故選:B.4、A【解析】過點且與原點O距離最遠的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠的直垂直于直線,,∴過點且與原點O距離最遠的直線的斜率為,∴過點且與原點O距離最遠的直線方程為:,即.故選:A5、C【解析】根據條件可得,則,結合條件即可得答案.【詳解】因,所以,則,又,所以,即.故選:C6、C【解析】令即得解.【詳解】解:令得.故選:C7、A【解析】利用空間向量的三角形法則可得,結合平行六面體的性質分析解答【詳解】平行六面體中,M為與的交點,,,,則有:,所以.故選:A8、C【解析】取,再根據的周期為4,可得,即可得解.【詳解】因為,所以.時,,時,,時,,時,,所以集合,所以的子集的個數為,故選:C.9、D【解析】由,,可求出公比,從而可求出等比數的通項公式,則可求出,得數列是一個等比數列,然后利用等比數的求和公式可求得答案【詳解】由題得.所以,所以.所以,所以數列是一個等比數列.所以=.故選:D10、A【解析】根據橢圓的方程求得的值,進而求得橢圓的焦點坐標,得到答案.【詳解】由橢圓,可得,則,所以橢圓的焦點坐標為和.故選:A.11、C【解析】根據總體、個體、樣本容量、樣本的定義,結合題意,即可判斷和選擇.【詳解】根據題意,總體是名學生的成績;個體是每個學生的成績;樣本容量是,樣本是抽取的100名學生的成績;故正確的是C.故選:C.12、A【解析】求出雙曲線焦點坐標與漸近線方程,利用點到直線的距離公式可求得結果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點坐標為,漸近線方程為,即,因,該雙曲線的左焦點到漸近線的距離為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】方法一:根據當線段為圓的直徑時,圓周長最小,由線段的中點為圓心,其長一半為半徑求解;方法二:根據當線段為圓的直徑時,圓周長最小,根據以AB為直徑的圓的方程求解.【詳解】方法一:當線段為圓的直徑時,過點,的圓的半徑最小,從而周長最小,即圓心為線段的中點,半徑則所求圓的標準方程為方法二:當線段為圓的直徑時,過點,的圓的半徑最小,從而周長最小又,,故所求圓的方程為,整理得,所以所求圓的標準方程為14、【解析】求導,求出切線斜率,進而寫出切線方程.【詳解】,則,故切斜方程為:,即故答案為:15、【解析】設過M的切線切點為,求出切線方程,參變分離得,令,則原問題等價于y=g(x)與y=-m-2的圖像有三個交點,根據導數研究g(x)的圖像即可求出m的范圍【詳解】,設過點的直線與曲線相切于點,則,化簡得,,令,則過點存在三條直線與曲線相切等價于y=g(x)與y=-m-2的圖像有三個交點∵,故當x<0或x>1時,,g(x)單調遞增;當0<x<1時,,g(x)單調遞減,又,,∴g(x)如圖,∴-2<-m-2<0,即故答案為:﹒16、【解析】根據還有一個量詞的命題的否定的方法解答即可.【詳解】命題“x≥1,x2-2x+4≥0”的否定為“”.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結合面面垂直的性質定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結論【小問1詳解】證明:∵M,N分別為VA,VB的中點,∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC18、(1)(2)證明見解析【解析】(1)設等比數列的公比為,根據,求得的值,即可求得數列的通項公式;(2)由等比數列的求和公式求得,得到,,化簡得到,即可求解【小問1詳解】解:設等比數列的公比為,因為,所以,解得,所以,所以數列的通項公式【小問2詳解】解:由(1)可得,,,所以,所以,即,,成等差數列19、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關系得過直線l的斜率,由點斜式化簡即可求解l的一般式方程;(2)結合勾股定理建立弦心距(由點到直線距離公式求解),半弦長,圓半徑的基本關系,解出,即可求解圓C的方程【小問1詳解】因為直線l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿足m=42+12=17,即m=17,所以圓C:x2+y2=1720、(1);(2)或.【解析】(1)根據直線與圓相切,求得切線的斜率,利用點斜式即可寫出切線方程;(2)利用弦長公式,結合已知條件求得直線的斜率,即可求得直線方程.【小問1詳解】圓,圓心,半徑,又點的坐標滿足圓方程,故可得點在圓上,則切線斜率滿足,又,故滿足題意的切線斜率,則過點的切線方程為,即.【小問2詳解】直線過點,若斜率不存在,此時直線的方程為,將其代入可得或,故直線截圓所得弦長為滿足題意;若斜率存在時,設直線方程為,則圓心到直線的距離,由弦長公式可得:,解得,也即,解得,則此時直線的方程為:.綜上所述,直線的方程為或.21、(1)40;(2)a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.【解析】(1)設每件定價為x元,可得提高價格后的銷售量,根據銷售的總收入不低于原收入,建立不等式,解不等式可得每件最高定價;(2)依題意,x>25時,不等式有解,等價于x>25時,有解,利用基本不等式,可以求得a.【詳解】(1)設每件定價為t元,依題意得,整理得,解得:25≤t≤40.所以要使銷售的總收入不低于原收入,每件定價最多為40元.(2)依題意知:當x>25時,不等式有解,等價于x>25時,有解.由于,當且僅當,即x=30時等號成立,所以a≥10.2.當該商品改革后的銷售量a至少達到10.2萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和,此時該商品的每件定價為30元.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創業扶持政策下的稅收減免分析試題及答案
- 2025年大學物理考試壓強計算的應用試題及答案
- 中國馬術俱樂部行業市場發展分析及競爭格局與投資前景研究報告2025-2028版
- 合同法章節試題及答案
- 即興演奏中的音色因素與樂理學習的關系試題及答案
- 中國防滑鋁板行業市場發展前景及發展趨勢與投資戰略研究報告2025-2028版
- 國際家具設計標準與規范試題及答案
- 中國鋁座鋼角尺行業市場發展前景及發展趨勢與投資戰略研究報告2025-2028版
- 農業電商在數字經濟中的價值試題及答案
- 農產品電商生態鏈構建試題及答案
- Unit5SectionB2a-2e閱讀課件人教版九年級英語全冊
- 小兒肺炎的護理
- 航道整治試卷A
- 腹腔鏡胃癌根治術護理教學查房
- 幼兒園優質公開課:中班科學《奇妙的紫甘藍汁》課件
- 地球物理勘探-第三章磁法勘探1
- 卡壓不銹鋼管的施工組織方案
- 2022山東大學出版社校園招聘16人上岸筆試歷年難、易錯點考題附帶參考答案與詳解
- Rexroth (博世力士樂)VFC 3610系列變頻器使用說明書
- DB32/T 4454-2023智慧化工園區建設規范
- 插齒機操作規程
評論
0/150
提交評論