2025屆安徽省安慶市潛山第二中學數(shù)學高二上期末經(jīng)典試題含解析_第1頁
2025屆安徽省安慶市潛山第二中學數(shù)學高二上期末經(jīng)典試題含解析_第2頁
2025屆安徽省安慶市潛山第二中學數(shù)學高二上期末經(jīng)典試題含解析_第3頁
2025屆安徽省安慶市潛山第二中學數(shù)學高二上期末經(jīng)典試題含解析_第4頁
2025屆安徽省安慶市潛山第二中學數(shù)學高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省安慶市潛山第二中學數(shù)學高二上期末經(jīng)典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的定義域為開區(qū)間,導函數(shù)在內(nèi)的圖像如圖所示,則函數(shù)在開區(qū)間內(nèi)的極大值點有()A.1個 B.2個C.3個 D.4個2.曲線上的點到直線的距離的最小值是()A.3 B.C.2 D.3.如圖,在平行六面體中,AC與BD的交點為M,設,,,則下列向量中與相等的向量是()A. B.C. D.4.已知等比數(shù)列,且,則()A.16 B.32C.24 D.645.“”是“直線與互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.若集合,,則A. B.C. D.7.在等差數(shù)列中,為數(shù)列的前項和,,,則數(shù)列的公差為()A. B.C.4 D.8.音樂與數(shù)學有著密切的聯(lián)系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經(jīng)過一次“損”,頻率變?yōu)樵瓉淼模玫健拔ⅰ保拔ⅰ苯?jīng)過一次“益”,頻率變?yōu)樵瓉淼模玫健吧獭薄来艘?guī)律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據(jù)此可推得()A.“商”“羽”“角”的頻率成公比為的等比數(shù)列B.“宮”“微”“商”的頻率成公比為的等比數(shù)列C.“宮”“商”“角”的頻率成公比為的等比數(shù)列D.“角”“商”“宮”的頻率成公比為的等比數(shù)列9.若,,且,則()A. B.C. D.10.已知關于的不等式的解集是,則的值是()A B.5C. D.711.下列命題中正確的是()A.函數(shù)最小值為2.B.函數(shù)的最小值為2.C.函數(shù)的最小值為D.函數(shù)的最大值為12.設.若,則=()A. B.C. D.e二、填空題:本題共4小題,每小題5分,共20分。13.曲線在處的切線與坐標軸圍成的三角形面積為___________.14.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為______15.已知直線與曲線,在曲線上隨機取一點,則點到直線的距離不大于的概率為__________.16.如圖,在棱長都為的平行六面體中,,,兩兩夾角均為,則________;請選擇該平行六面體的三個頂點,使得經(jīng)過這三個頂點的平面與直線垂直.這三個頂點可以是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱錐中,為底面中心,,為中點,(1)求證:平面;(2)求:(ⅰ)直線到平面的距離;(ⅱ)求直線與平面所成角的正弦值18.(12分)已知橢圓的離心率為,短軸長為2(1)求橢圓的方程;(2)設過點且斜率為的直線與橢圓交于不同的兩點,,求當?shù)拿娣e取得最大值時的值19.(12分)已知雙曲線,直線l與交于P、Q兩點(1)若點是雙曲線的一個焦點,求的漸近線方程;(2)若點P的坐標為,直線l的斜率等于1,且,求雙曲線的離心率20.(12分)已知雙曲線C的方程為(),離心率為.(1)求雙曲線的標準方程;(2)過的直線交曲線于兩點,求的取值范圍.21.(12分)已知雙曲線的左、右焦點分別為,過作斜率為的弦.求:(1)弦的長;(2)△的周長.22.(10分)已知等比數(shù)列的公比,,.(1)求數(shù)列的通項公式;(2)令,若,求滿足條件的最大整數(shù)n.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用極值點的定義求解.【詳解】由導函數(shù)的圖象知:函數(shù)在內(nèi),與x軸有四個交點:第一個點處導數(shù)左正右負,第二個點處導數(shù)左負右正,第三個點處導數(shù)左正右正,第四個點處導數(shù)左正右負,所以函數(shù)在開區(qū)間內(nèi)的極大值點有2個,故選:B2、D【解析】求出函數(shù)的導函數(shù),設切點為,依題意即過切點的切線恰好與直線平行,此時切點到直線的距離最小,求出切點坐標,再利用點到直線的距離公式計算可得;【詳解】解:因為,所以,設切點為,則,解得,所以切點為,點到直線的距離,所以曲線上的點到直線的距離的最小值是;故選:D3、B【解析】根據(jù)向量加法和減法法則即可用、、表示出.【詳解】故選:B.4、A【解析】由等比數(shù)列的定義先求出公比,然后可解..【詳解】,得故選:A5、A【解析】根據(jù)兩直線垂直的性質(zhì)求出,再結(jié)合充分條件和必要條件的定義即可得出答案.【詳解】解:因為直線與互相垂直,所以,解得或,所以“”是“直線與互相垂直”的充分不必要條件.故選:A.6、A【解析】通過解不等式得出集合B,可以做出集合A與集合B的關系示意圖,可得出選項.【詳解】因為,解不等式即,所以或,所以集合,作出集合A與集合B的示意圖如下圖所示:所以:,故選A【點睛】本題考查集合間的交集運算,屬于基礎題.7、A【解析】由已知條件列方程組求解即可【詳解】設等差數(shù)列的公差為,因為,,所以,解得,故選:A8、C【解析】根據(jù)文化知識,分別求出相對應的頻率,即可判斷出結(jié)果【詳解】設“宮”的頻率為a,由題意經(jīng)過一次“損”,可得“徵”的頻率為a,“徵”經(jīng)過一次“益”,可得“商”的頻率為a,“商”經(jīng)過一次“損”,可得“羽”頻率為a,最后“羽”經(jīng)過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數(shù)列,所以“宮、商、角”的頻率成等比數(shù)列,且公比為,故選:C【點睛】本題考查等比數(shù)列的定義,考查學生的運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎題9、A【解析】由于對數(shù)函數(shù)的存在,故需要對進行放縮,結(jié)合(需證明),可放縮為,利用等號成立可求出,進而得解.【詳解】令,,故在上單調(diào)遞減,在上單調(diào)遞增,,故,即,當且僅當,等號成立.所以,當且僅當時,等號成立,又,所以,即,所以,又,所以,,故故選:A10、D【解析】由題意可得的根為,然后利用根與系數(shù)的關系列方程組可求得結(jié)果【詳解】因為關于的不等式的解集是,所以方程的根為,所以,得,所以,故選:D11、D【解析】根據(jù)基本不等式知識對選項逐一判斷【詳解】對于A,時為負值,故A錯誤對于B,,而無解,無法取等,故B錯誤對于,當且僅當即時等號成立,故,D正確,C錯誤故選:D12、D【解析】由題可得,將代入解方程即可.【詳解】∵,∴,∴,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求導數(shù),得出切線斜率,寫出切線方程,然后可求三角形的面積.【詳解】,當時,,所以切線方程為,即;令可得,令可得;所以切線與坐標軸圍成的三角形面積為.故答案為:.14、【解析】由拋物線定義可得,由此可知當為與拋物線的交點時,取得最小值,進而求得點坐標.【詳解】由題意得:拋物線焦點為,準線為作,垂直于準線,如下圖所示:由拋物線定義知:(當且僅當三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關問題的求解,關鍵是能夠熟練應用拋物線定義確定最值取得的位置.15、【解析】畫出示意圖,根據(jù)圖形分析可知點在陰影部分所對的劣弧上,由幾何概型可求出.【詳解】作出示意圖曲線是圓心為原點,半徑為2的一個半圓.圓心到直線距離,而點到直線的距離為,故若點到直線的距離不大于,則點在陰影部分所對的劣弧上,由幾何概型的概率計算公式知,所求概率為.故答案為:.【點睛】本題考查幾何概型的概率計算,屬于中檔題.16、①.②.點或點(填出其中一組即可)【解析】(1)以向量,,為基底分別表達出向量和,展開即可解決;(2)由上一問可知,用上一問同樣的方法可以證明出,這樣就證明了平面與直線垂直.【詳解】(1)令,,,則,則有,故(2)令,,,則,則有,故故,即又由(1)之,,故直線垂直于平面同理可證直線垂直于平面故答案為:0;點或點三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)(i);(ii).【解析】(1)連接,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可證得結(jié)論成立;(2)(i)利用空間向量法可求得直線到平面的距離;(ii)利用空間向量法可求得直線與平面所成角的正弦值.【小問1詳解】證明:連接,則為的中點,且,在正四棱錐中,平面,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示空間直角坐標系,則、、、、、、、,,設平面的法向量為,,,則,取,則,因為,則,又因為平面,所以,平面.【小問2詳解】解:(i),所以,直線到平面的距離為.(ii),則,因此,直線與平面所成角的正弦值為.18、(1);(2).【解析】(1)由短軸長得,由離心率處也的關系,從而可求得,得橢圓方程;(2)設,,直線的方程為,代入橢圓方程應用韋達定理得,由弦長公式得弦長,求出原點到直線的距離,得出三角形面積為的函數(shù),用換元法,基本不等式求得最大值,得值【詳解】解:(1)由題意得,,所以,,橢圓的方程為(2)直線的方程為,代入橢圓的方程,整理得由題意,,設,則,弦長,點到直線的距離,所以的面積,令,則,當且僅當時取等號.所以,對應的,可解得,滿足題意19、(1)(2)或【解析】(1)根據(jù)題意可得,又因為且,解得,可得雙曲線方程,進而可得的漸近線方程(2)設直線的方程為:,,,聯(lián)立直線與雙曲線方程,可得關于的一元二次方程,由韋達定理可得,,再由兩點之間距離公式得,解得,進而由可求出,即可求得離心率.【小問1詳解】∵點是雙曲線的一個焦點,∴,又∵且,解得,∴雙曲線方程為,∴的漸近線方程為:;小問2詳解】設直線的方程為,且,,聯(lián)立,可得,則,∴,即,∴,解得或,即由可得或,故雙曲線的離心率或.20、(1);(2).【解析】(1)根據(jù)題意,結(jié)合離心率易,知雙曲線為等軸雙曲線,進而可求解;(2)根據(jù)題意,分直線斜率否存在兩種情形討論,結(jié)合設而不求法以及向量數(shù)量積的坐標公式,即可求解.【小問1詳解】根據(jù)題意,由離心率為,知雙曲線是等軸雙曲線,所以,故雙曲線的標準方程為.【小問2詳解】當直線斜率存在時,設直線的方程為,則由消去,得到,∵直線與雙曲線交于M、N兩點,,解得.設,則有,,因此,∵,∴且,故或,故;②當直線的斜率不存在時,此時,易知,,故.綜上所述,所求的取值范圍是.21、(1);(2).【解析】(1)聯(lián)立直線方程與雙曲線方程,求得交點的坐標,再用兩點之間的距離公式即可求得;(2)根據(jù)(1)中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論