攀枝花市重點中學2025屆高二數學第一學期期末學業質量監測模擬試題含解析_第1頁
攀枝花市重點中學2025屆高二數學第一學期期末學業質量監測模擬試題含解析_第2頁
攀枝花市重點中學2025屆高二數學第一學期期末學業質量監測模擬試題含解析_第3頁
攀枝花市重點中學2025屆高二數學第一學期期末學業質量監測模擬試題含解析_第4頁
攀枝花市重點中學2025屆高二數學第一學期期末學業質量監測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

攀枝花市重點中學2025屆高二數學第一學期期末學業質量監測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,”否定是()A., B.,C., D.,2.現有甲、乙、丙、丁、戊五位同學,分別帶著A、B、C、D、E五個不同的禮物參加“抽盲盒”學游戲,先將五個禮物分別放入五個相同的盒子里,每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的概率為()A. B.C. D.3.已知正方體中,分別為棱的中點,則直線與所成角的余弦值為()A. B.C. D.4.已知直線,兩個不同的平面,,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則5.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.6.在一個數列中,如果每一項與它的后一項的和都為同一個常數,那么這個數列叫做“等和數列”,這個數叫做數列的公和.已知等和數列{an}中,,公和為5,則()A.2 B.﹣2C.3 D.﹣37.一條光線從點射出,經軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或8.如圖,和分別是雙曲線的兩個焦點,和是以為圓心,以為半徑的圓與該雙曲線左支的兩個交點,且是等邊三角形,則雙曲線的離心率為()A. B.C. D.9.函數的圖象如圖所示,則下列大小關系正確的是()A.B.C.D.10.用3,4,5,6,7,9這6個數組成沒有重復數字的六位數,下列結論正確的有()A.在這樣的六位數中,奇數共有480個B.在這樣的六位數中,3、5、7、9相鄰的共有120個C.在這樣的六位數中,4,6不相鄰的共有504個D.在這樣六位數中,4個奇數從左到右按照從小到大排序的共有60個11.若曲線與曲線在公共點處有公共切線,則實數()A. B.C. D.12.定義在R上的函數與函數在上具有相同的單調性,則k的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的前4項依次為,,,,則的一個通項公式為________14.經過點作直線,直線與連接兩點線段總有公共點,則直線的斜率的取值范圍是________15.已知直線(為常數)和圓,給出下列四個結論:①當變化時,直線恒過定點;②直線與圓可能無公共點;③若直線與圓有兩個不同交點,,則線段的長的最小值為;④對任意實數,圓上都不存在關于直線對稱的兩個點.其中正確的結論是______.(寫出所有正確結論的序號)16.將車行的30輛大巴車編號為01,02,…,30,采用系統抽樣方法抽取一個容量為3的樣本,且在某組隨機抽得的一個號碼為08,則剩下的兩個號碼依次是__________(按號碼從小到大排列)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為零的等差數列的前項和為,,且,,成等比數列(1)求的通項公式;(2)記,求數列的前項和18.(12分)平面直角坐標系中,過橢圓:右焦點的直線交M于A,B兩點,P為AB的中點,且OP的斜率為.(1)求橢圓M的方程;(2)C,D為橢圓M上的兩點,若四邊形ACBD的對角線CD與AB垂直,求四邊形ACBD面積的最大值.19.(12分)如圖,在四棱錐中,底面ABCD,,,,(1)證明:;(2)當PB的長為何值時,直線AB與平面PCD所成角的正弦值為?20.(12分)已知拋物線經過點.(Ⅰ)求拋物線C的方程及其焦點坐標;(Ⅱ)過拋物線C上一動點P作圓的兩條切線,切點分別為A,B,求四邊形面積的最小值.21.(12分)如圖,在半徑為6m的圓形O為圓心鋁皮上截取一塊矩形材料OABC,其中點B在圓弧上,點A,C在兩半徑上,現將此矩形鋁皮OABC卷成一個以AB為母線的圓柱形罐子的側面不計剪裁和拼接損耗,設矩形的邊長|AB|xm,圓柱的體積為Vm3.(1)寫出體積V關于x的函數關系式,并指出定義域;(2)當x為何值時,才能使做出的圓柱形罐子的體積V最大最大體積是多少?22.(10分)已知為各項均為正數的等比數列,且,(1)求數列的通項公式;(2)令,求數列前n項和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據含有量詞的命題的否定即可得出結論.【詳解】命題為全稱命題,則命題的否定為:,.故選:D.2、D【解析】利用排列組合知識求出每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的情況個數,以及五人抽取五個禮物的總情況,兩者相除即可.【詳解】先從五人中抽取一人,恰好拿到自己禮物,有種情況,接下來的四人分為兩種情況,一種是兩兩一對,兩個人都拿到對方的禮物,有種情況,另一種是四個人都拿到另外一個人的禮物,不是兩兩一對,都拿到對方的情況,由種情況,綜上:共有種情況,而五人抽五個禮物總數為種情況,故恰有一位同學拿到自己禮物的概率為.故選:D3、D【解析】以D為原點建立空間直角坐標系,求出E,F,B,D1點的坐標,利用直線夾角的向量求法求解【詳解】如圖,以D為原點建立空間直角坐標系,設正方體的邊長為2,則,,,,,直線與所成角的余弦值為:.故選D【點睛】本題主要考查了空間向量的應用及向量夾角的坐標運算,屬于基礎題4、C【解析】對于A,可能在內,故可判斷A;對于B,可能相交,故可判斷B;對于C,根據線面垂直的判定定理,可判定C;對于D,和可能平行,或斜交或在內,故可判斷D.【詳解】對于A,除了外,還有可能在內,故可判斷A錯誤;對于B,,那么可能相交,故可判斷B錯誤;對于C,根據線面平行的性質定理可知,在內一定存在和平行的直線,那么該直線也垂直于,所以,故判定C正確;對于D,,,則和可能平行,或斜交或在內,故可判D.錯誤,故選:C.5、D【解析】由題設易知四邊形為矩形,可得,結合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關鍵點點睛:由橢圓的對稱性及矩形性質可得,由已知條件得到,進而得到橢圓參數的齊次式求離心率范圍.6、C【解析】利用已知即可求得,再利用已知可得:,問題得解【詳解】解:根據題意,等和數列{an}中,,公和為5,則,即可得,又由an﹣1+an=5,則,則3;故選C【點睛】本題主要考查了新概念知識,考查理解能力及轉化能力,還考查了數列的周期性,屬于中檔題7、D【解析】由光的反射原理知,反射光線的反向延長線必過點,設反射光線所在直線的斜率為,則反射光線所在直線方程為:,即:.又因為光線與圓相切,所以,,整理:,解得:,或,故選D考點:1、圓的標準方程;2、直線的方程;3、直線與圓的位置關系.8、D【解析】解:,設F1F2=2c,∵△F2AB是等邊三角形,∴∠AF1F2==30°,∴AF1=c,AF2=c,∴a=(c-c)2,e=2c(c-c)=+1,故選D9、C【解析】根據導數的幾何意義可得答案.【詳解】因為函數在某點處的導數值表示的是此點處切線的斜率,所以由圖可得,故選:C10、A【解析】A選項,特殊位置優先考慮求出這樣的六位數中,奇數個數;B選項,相鄰問題捆綁法求解;C選項,不相鄰問題插空法求解;D選項,定序問題使用倍縮法求解.【詳解】用3,4,5,6,7,9這6個數組成沒有重復數字的六位數,個位為3,5,7,9中的一位,有種,其余五個數位上的數字進行全排列,有種,綜上:在這樣的六位數中,奇數共有個,A正確;在這樣的六位數中,3、5、7、9相鄰,將3、5、7、9捆綁,有種排法,再與4,6進行全排列,故共有個,B錯誤;在這樣的六位數中,4,6不相鄰,先將3、5、7、9進行全排列,再從五個位置中任選兩個將4,6排列,綜上共有個,C錯誤;在這樣的六位數中,4個奇數從左到右按照從小到大排序的共有個,D錯誤.故選:A11、A【解析】設公共點為,根據導數的幾何意義可得出關于、的方程組,即可解得實數、的值.【詳解】設公共點為,的導數為,曲線在處的切線斜率,的導數為,曲線在處的切線斜率,因為兩曲線在公共點處有公共切線,所以,且,,所以,即解得,所以,解得,故選:A12、B【解析】判定函數單調性,再利用導數結合函數在的單調性列式計算作答.【詳解】由函數得:,當且僅當時取“=”,則在R上單調遞減,于是得函數在上單調遞減,即,,即,而在上單調遞減,當時,,則,所以k的取值范圍是.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】觀察數列前幾項,找出規律即可寫出通項公式.【詳解】根據數列前幾項,先不考慮正負,可知,再由奇數項為負,偶數項為正,可得到一個通項公式,故答案為:(不唯一)14、【解析】求出的斜率,結合圖形可得結論【詳解】,,而,因此,故答案為:15、③④【解析】由可判斷①;根據直線過的定點在圓內可判斷②;當直線與過圓心的直徑垂直時,求出線段的長度可判斷③;把圓心代入直線的方程可判斷④.【詳解】對于①,,當變化時,直線恒過定點,故錯誤;對于②,因為,所以在圓的內部,所以直線與圓總有公共點,故錯誤;對于③,當直線與過圓心的直徑垂直時,線段的長度的最小,此時,故正確;對于④,把圓心代入直線,得對任意實數,圓上都不存在關于直線對稱的兩個點,故正確.故答案為:③④.16、18,28【解析】根據等距抽樣的性質確定剩下的兩個號碼即可.【詳解】由于從30輛大巴車中抽取3輛車,故分組間距為10,又第一組的號碼為08,所以其它兩個號碼依次是18,28故答案為:18,28.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設數列的公差為,由,且,,,利用“”法求解;(2)由,利用裂項相消法求解.【小問1詳解】解:,,設數列的公差為,則,,,由題知,整理得,解得,(舍去),,則.【小問2詳解】,則=.18、(1)(2)【解析】(1)設,,的中點為,利用“點差法”求解;(2)由求得A,B的坐標,進而得到的長,再根據,設直線的方程為,由,求得的長,然后由四邊形的面積為求解.【小問1詳解】解:把右焦點代入直線,得,設,,的中點為,則,,相減得,即,即,即.又,,則.又,解得,,故橢圓的方程為.【小問2詳解】聯立消去,可得,解得或,故交點為,.所以.因為,所以可設直線的方程為,,,聯立消去,得到,因為直線與橢圓有兩個不同的交點,則,解得,且,又,則.故四邊形的面積為,故當時,取得最大值,最大值為.所以四邊形的面積的最大值為.19、(1)證明見解析(2)【解析】(1)由線面垂直的判斷定理證明平面PAB,再由線面垂直的性質定理即可證明;(2)以A為原點,AB,AC,AP分別為x軸,y軸,z軸,建立空間直角坐標系,設,求出平面PCD的法向量的坐標,根據直線AB與平面PCD所成角的正弦值為,利用向量法可求得,從而可求解PB的長.【小問1詳解】證明:因為底面ABCD,又平面ABCD,所以,又,,AB,平面PAB,所以平面PAB,又平面PAB,所以;小問2詳解】解:因為底面ABCD,,所以以A為原點,AB,AC,AP分別為x軸,y軸,z軸,建立如圖所示空間直角坐標系,因為,,,所以,則,,所以,,,,設,則,,,設平面PCD的法向量為,則,令,則,,所以,所以,解得,則,所以當時,直線AB與平面PCD所成角正弦值為20、(1),;(2).【解析】(1)將點代入拋物線方程求解出的值,則拋物線方程和焦點坐標可知;(2)設出點坐標,根據切線長相等以及切線垂直于半徑將四邊形的面積表示為,然后根據三角形面積公式將其表示為,根據點到點的距離公式表示出,然后結合二次函數的性質求解出四邊形面積的最小值.【詳解】(1)因為拋物線過點,所以,所以,所以拋物線的方程為:,焦點坐標為,即;(2)設,因為為圓的切線,所以,且,所以,又因為,所以,當時,四邊形的面積有最小值且最小值為.【點睛】關鍵點點睛:解答本題的關鍵在于根據圓的切線的性質將四邊形面積轉化為三角形的面積,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論