




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省大同市云岡區2022年中考數學最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.《九章算術》是我國古代第一部自成體系的數學專著,代表了東方數學的最高成就.它的算法體系至今仍在推動著計算機的發展和應用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”如圖所示,請根據所學知識計算:圓形木材的直徑AC是()A.13寸 B.20寸 C.26寸 D.28寸2.一個多邊形的內角和比它的外角和的倍少180°,那么這個多邊形的邊數是()A.7 B.8 C.9 D.103.﹣3的相反數是()A. B. C. D.4.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的側面積等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm25.計算6m3÷(-3m2)的結果是()A.-3m B.-2m C.2m D.3m6.下列運算正確的是()A. B.C.a2?a3=a5 D.(2a)3=2a37.的值是A. B. C. D.8.有15位同學參加歌詠比賽,所得的分數互不相同,取得分前8位同學進入決賽.某同學知道自己的分數后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數 B.中位數 C.眾數 D.方差9.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π10.已知x+=3,則x2+=()A.7 B.9 C.11 D.811.下列計算正確的是()A.a3﹣a2=a B.a2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a612.計算x﹣2y﹣(2x+y)的結果為()A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB是半圓O的直徑,點C、D是半圓O的三等分點,若弦CD=2,則圖中陰影部分的面積為.14.如圖,在矩形ABCD中,E是AD邊的中點,,垂足為點F,連接DF,分析下列四個結論:∽;;;其中正確的結論有______.15.已知梯形ABCD,AD∥BC,BC=2AD,如果AB=a,AC=b,那么DA=_____(用16.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點D,聯結DC.如果AD=2,BD=6,那么△ADC的周長為.17.如圖,AC是以AB為直徑的⊙O的弦,點D是⊙O上的一點,過點D作⊙O的切線交直線AC于點E,AD平分∠BAE,若AB=10,DE=3,則AE的長為_____.18.如圖,△ABC中,AB=6,AC=4,AD、AE分別是其角平分線和中線,過點C作CG⊥AD于F,交AB于G,連接EF,則線段EF的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)中央電視臺的“朗讀者”節目激發了同學們的讀書熱情,為了引導學生“多讀書,讀好書“,某校對八年級部分學生的課外閱讀量進行了隨機調查,整理調查結果發現,學生課外閱讀的本書最少的有5本,最多的有8本,并根據調查結果繪制了不完整的圖表,如圖所示:本數(本)頻數(人數)頻率5a0.26180.1714b880.16合計50c我們定義頻率=,比如由表中我們可以知道在這次隨機調查中抽樣人數為50人課外閱讀量為6本的同學為18人,因此這個人數對應的頻率就是=0.1.(1)統計表中的a、b、c的值;(2)請將頻數分布表直方圖補充完整;(3)求所有被調查學生課外閱讀的平均本數;(4)若該校八年級共有600名學生,你認為根據以上調查結果可以估算分析該校八年級學生課外閱讀量為7本和8本的總人數為多少嗎?請寫出你的計算過程.20.(6分)如圖,是菱形的對角線,,(1)請用尺規作圖法,作的垂直平分線,垂足為,交于;(不要求寫作法,保留作圖痕跡)在(1)條件下,連接,求的度數.21.(6分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN22.(8分)如圖,一條公路的兩側互相平行,某課外興趣小組在公路一側AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進15米到點B處測得∠CBE=45°,求公路的寬度.(結果精確到0.1米,參考數據:≈1.73)23.(8分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數據繪制成如下兩幅不完整的統計圖.請根據以上的信息,回答下列問題:(1)補全扇形統計圖和條形統計圖;(2)所抽查學生參加社會實踐活動天數的眾數是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數不少于7天”的學生大約有多少人?24.(10分)探究:在一次聚會上,規定每兩個人見面必須握手,且只握手1次若參加聚會的人數為3,則共握手次:;若參加聚會的人數為5,則共握手次;若參加聚會的人數為n(n為正整數),則共握手次;若參加聚會的人共握手28次,請求出參加聚會的人數.拓展:嘉嘉給琪琪出題:“若線段AB上共有m個點(含端點A,B),線段總數為30,求m的值.”琪琪的思考:“在這個問題上,線段總數不可能為30”琪琪的思考對嗎?為什么?25.(10分)“機動車行駛到斑馬線要禮讓行人”等交通法規實施后,某校數學課外實踐小組就對這些交通法規的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統計圖和扇形統計圖.請結合圖中所給信息解答下列問題:(1)本次共調查名學生;扇形統計圖中C所對應扇形的圓心角度數是;(2)補全條形統計圖;(3)該校共有800名學生,根據以上信息,請你估計全校學生中對這些交通法規“非常了解”的有多少名?(4)通過此次調查,數學課外實踐小組的學生對交通法規有了更多的認識,學校準備從組內的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區交通法規競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學生同時被選中的概率.26.(12分)如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F,且DE=EF.求證:∠C=90°;當BC=3,sinA=時,求AF的長.27.(12分)如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使∠BED=∠C.(1)判斷直線AC與圓O的位置關系,并證明你的結論;(2)若AC=8,cos∠BED=45
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:設⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解方程即可.詳解:設⊙O的半徑為r.在Rt△ADO中,AD=5,OD=r-1,OA=r,則有r2=52+(r-1)2,解得r=13,∴⊙O的直徑為26寸,故選C.點睛:本題考查垂徑定理、勾股定理等知識,解題的關鍵是學會利用參數構建方程解決問題2、A【解析】
設這個正多邊形的邊數是n,就得到方程,從而求出邊數,即可求出答案.【詳解】設這個多邊形的邊數為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點睛】本題主要考查多邊形內角與外角的知識點,此題要結合多邊形的內角和與外角和,根據題目中的等量關系,構建方程求解即可.3、D【解析】
相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.【詳解】根據相反數的定義可得:-3的相反數是3.故選D.【點睛】本題考查相反數,題目簡單,熟記定義是關鍵.4、B【解析】由三視圖可知這個幾何體是圓錐,高是4cm,底面半徑是3cm,所以母線長是(cm),∴側面積=π×3×5=15π(cm2),故選B.5、B【解析】
根據單項式相除,把系數與同底數冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式計算,然后選取答案即可.【詳解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故選B.6、C【解析】
根據算術平方根的定義、二次根式的加減運算、同底數冪的乘法及積的乘方的運算法則逐一計算即可判斷.【詳解】解:A、=2,此選項錯誤;B、不能進一步計算,此選項錯誤;C、a2?a3=a5,此選項正確;D、(2a)3=8a3,此選項計算錯誤;故選:C.【點睛】本題主要考查二次根式的加減和冪的運算,解題的關鍵是掌握算術平方根的定義、二次根式的加減運算、同底數冪的乘法及積的乘方的運算法則.7、D【解析】
根據特殊角三角函數值,可得答案.【詳解】解:,故選:D.【點睛】本題考查了特殊角三角函數值,熟記特殊角三角函數值是解題關鍵.8、B【解析】
由中位數的概念,即最中間一個或兩個數據的平均數;可知15人成績的中位數是第8名的成績.根據題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數,比較即可.【詳解】解:由于15個人中,第8名的成績是中位數,故小方同學知道了自己的分數后,想知道自己能否進入決賽,還需知道這十五位同學的分數的中位數.故選B.【點睛】此題主要考查統計的有關知識,主要包括平均數、中位數、眾數的意義.反映數據集中程度的統計量有平均數、中位數、眾數等,各有局限性,因此要對統計量進行合理的選擇和恰當的運用.9、C【解析】
由切線的性質定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質,圓周角定理,弧長的計算,解題的關鍵是先求出角度再用弧長公式進行計算.10、A【解析】
根據完全平方公式即可求出答案.【詳解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故選A.【點睛】本題考查完全平方公式,解題的關鍵是熟練運用完全平方公式.11、D【解析】各項計算得到結果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D12、C【解析】
原式去括號合并同類項即可得到結果.【詳解】原式,故選:C.【點睛】本題主要考查了整式的加減運算,熟練掌握去括號及合并同類項是解決本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】試題分析:連結OC、OD,因為C、D是半圓O的三等分點,所以,∠BOD=∠COD=60°,所以,三角形OCD為等邊三角形,所以,半圓O的半徑為OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以陰影部分的面積為為S=--()=.考點:扇形的面積計算.14、【解析】
①證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,證明DM垂直平分CF,即可證明;④設AE=a,AB=b,則AD=2a,根據△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正確;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④錯誤;故答案為:①②③.【點睛】本題主要考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.15、1【解析】
根據向量的三角形法則表示出CB,再根據BC、AD的關系解答.【詳解】如圖,∵AB=a,∴CB=AB-AC=a-b,∵AD∥BC,BC=2AD,∴DA=12CB=12(a-b)=1故答案為12a-【點睛】本題考查了平面向量,梯形,向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關鍵.16、1.【解析】試題分析:由BC的垂直平分線交AB于點D,可得CD=BD=6,又由等邊對等角,可求得∠BCD的度數,繼而求得∠ADC的度數,則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長為:AD+DC+AC=2+6+6=1.考點:1.線段垂直平分線的性質;2.等腰三角形的判定與性質.17、1或9【解析】(1)點E在AC的延長線上時,過點O作OFAC交AC于點F,如圖所示∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAE,∴∠OAD=∠ODA=∠DAC,∴OD//AE,∵DE是圓的切線,∴DE⊥OD,∴∠ODE=∠E=90o,∴四邊形ODEF是矩形,∴OF=DE,EF=OD=5,又∵OF⊥AC,∴AF=,∴AE=AF+EF=5+4=9.(2)當點E在CA的線上時,過點O作OFAC交AC于點F,如圖所示同(1)可得:EF=OD=5,OF=DE=3,在直角三角形AOF中,AF=,∴AE=EF-AF=5-4=1.18、1【解析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,則BG=AB?AG=6?4=2.又∵BE=CE,∴EF是△BCG的中位線,∴EF=BG=1.故答案是:1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)10、0.28、1;(2)見解析;(3)6.4本;(4)264名;【解析】
(1)根據百分比=計算即可;(2)求出a組人數,畫出直方圖即可;(3)根據平均數的定義計算即可;(4)利用樣本估計總體的思想解決問題即可;【詳解】(1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;(2)補全圖形如下:(3)所有被調查學生課外閱讀的平均本數==6.4(本)(4)該校八年級共有600名學生,該校八年級學生課外閱讀7本和8本的總人數有600×=264(名).【點睛】本題考查頻數分布直方圖、樣本估計總體等知識,解題的關鍵是熟練掌握基本概念,靈活運用所學知識解決問題,屬于中考常考題型.20、(1)答案見解析;(2)45°.【解析】
(1)分別以A、B為圓心,大于長為半徑畫弧,過兩弧的交點作直線即可;(2)根據∠DBF=∠ABD﹣∠ABF計算即可;【詳解】(1)如圖所示,直線EF即為所求;(2)∵四邊形ABCD是菱形,∴∠ABD=∠DBC∠ABC=75°,DC∥AB,∠A=∠C,∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°.∵EF垂直平分線段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【點睛】本題考查了線段的垂直平分線作法和性質,菱形的性質等知識,解題的關鍵是靈活運用所學知識解決問題.21、詳見解析.【解析】
只要證明∠EAM=∠ECN,根據同位角相等兩直線平行即可證明.【詳解】證明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.【點睛】本題考查平行線的判定和性質,解題的關鍵是熟練掌握平行線的性質和判定,屬于中考基礎題.22、公路的寬為20.5米.【解析】
作CD⊥AE,設CD=x米,由∠CBD=45°知BD=CD=x,根據tan∠CAD=,可得=,解之即可.【詳解】解:如圖,過點C作CD⊥AE于點D,設公路的寬CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的寬為20.5米.【點睛】本題考查了直角三角形的應用,解答本題的關鍵是根據仰角構造直角三角形,利用三角函數解直角三角形.23、(1)見解析;(2)A;(3)800人.【解析】
(1)用A組人數除以它所占的百分比求出樣本容量,利用360°乘以對應的百分比即可求得扇形圓心角的度數,再求得時間是8天的人數,從而補全扇形統計圖和條形統計圖;(2)根據眾數的定義即可求解;(3)利用總人數2000乘以對應的百分比即可求解.【詳解】解:(1)∵被調查的學生人數為24÷40%=60人,∴D類別人數為60﹣(24+12+15+3)=6人,則D類別的百分比為×100%=10%,補全圖形如下:(2)所抽查學生參加社會實踐活動天數的眾數是A,故答案為:A;(3)估計參加社會實踐“活動天數不少于7天”的學生大約有2000×(25%+10%+5%)=800人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.24、探究:(1)3,1;(2);(3)參加聚會的人數為8人;拓展:琪琪的思考對,見解析.【解析】
探究:(1)根據握手次數=參會人數×(參會人數-1)÷2,即可求出結論;
(2)由(1)的結論結合參會人數為n,即可得出結論;(3)由(2)的結論結合共握手28次,即可得出關于n的一元二次方程,解之取其正值即可得出結論;拓展:將線段數當成握手數,頂點數看成參會人數,由(2)的結論結合線段總數為2,即可得出關于m的一元二次方程,解之由該方程的解均不為整數可得出琪琪的思考對.【詳解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案為3;1.(2)∵參加聚會的人數為n(n為正整數),∴每人需跟(n-1)人握手,∴握手總數為.故答案為.(3)依題意,得:=28,
整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去).答:參加聚會的人數為8人.拓展:琪琪的思考對,理由如下:如果線段數為2,則由題意,得:=2,整理,得:m2-m-60=0,解得m1=,m2=(舍去).∵m為正整數,∴沒有符合題意的解,∴線段總數不可能為2.【點睛】本題考查了一元二次方程的應用以及列代數式,解題的關鍵是:(1)根據各數量之間的關系,列式計算;(2)根據各數量之間的關系,用含n的代數式表示出握手總數;(3)(拓展)找準等量關系,正確列出一元二次方程.25、(1)60、90°;(2)補全條形圖見解析;(3)估計全校學生中對這些交通法規“非常了解”的有320名;(4)甲和乙兩名學生同時被選中的概率為.【解析】【分析】(1)用A的人數以及所占的百分比就可以求出調查的總人數,用C的人數除以調查的總人數后再乘以360度即可得;(2)根據D的百分比求出D的人數,繼而求出B的人數,即可補全條形統計圖;(3)用“非常了解”所占的比例乘以800即可求得;(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進行求解即可得.【詳解】(1)本次調查的學生總人數為24÷40%=60人,扇形統計圖中C所對應扇形的圓心角度數是360°×=90°,故答案為60、90°;(2)D類型人數為60×5%=3,則B類型人數為60﹣(24+15+3)=18,補全條形圖如下:(3)估計全校學生中對這些交通法規“非常了解”的有800×40%=320名;(4)畫樹狀圖為:共有12種等可能的結果數,其中甲和乙兩名學生同時被選中的結果數為2,所以甲和乙兩名學生同時被選中的概率為.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 看電影后的心靈感悟讀后感15篇
- 統計學基礎模塊教學實踐方案
- 2025年數控機床及加工機械項目深度研究分析報告
- 銅陵發電廠六期工程項目可行性實施報告
- 酒店住宿協議書住宿協議書
- 我家的小白狗350字11篇
- 教育機構質量保證措施實施方案
- 河南省乒乓球隊運動員流暢狀態特征和影響因素研究
- 城市人口流動與就業格局-洞察闡釋
- 元宵疫情作文600字(7篇)
- 電工儀表與測量(第六版)中職技工電工類專業全套教學課件
- 聲明書:企業質量管理體系聲明
- JTGT F81-01-2004 公路工程基樁動測技術規程
- 110kV變電站及110kV輸電線路運維投標技術方案(第一部分)
- 拆模安全操作規程培訓
- 數字化系列研究之財務數智化篇:大型集團企業財務管理的數智化
- 2024年全國兩會精神主要內容
- 骨科手術后的傷口護理方法
- 色彩心理學課件
- 《鋼鐵生產流程》課件
- 【跨國并購風險問題分析文獻綜述2700字】
評論
0/150
提交評論