




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專(zhuān)題35最值問(wèn)題
考點(diǎn)一:利用對(duì)稱(chēng)求最值問(wèn)題
-------\
知識(shí)回顧
1.基本知識(shí)點(diǎn):
①兩點(diǎn)之間線(xiàn)段最短;②點(diǎn)到直線(xiàn)的距離最短。
2,求最值問(wèn)題的類(lèi)型
問(wèn)題基本圖形解題圖形解題思路與步驟
如圖①:如圖,
存在直線(xiàn)1以及直線(xiàn)0.
外的點(diǎn)P和點(diǎn)Q,直P(pán).
___________________1
線(xiàn)/上存在一點(diǎn)M,解題思路:找點(diǎn)作對(duì)稱(chēng)
使得MP+MQ的值解題步驟:
最小。①?gòu)膯?wèn)題中確定定點(diǎn)與動(dòng)
如圖②:如圖,點(diǎn)。
N
已知NMON以及角②作其中一個(gè)定點(diǎn)關(guān)于動(dòng)
內(nèi)一點(diǎn)P,角的兩邊點(diǎn)所在直線(xiàn)的對(duì)稱(chēng)點(diǎn)。通常
0M與ON上存在點(diǎn)O/-----------------------M上情況下其中一個(gè)定點(diǎn)的關(guān)
0
A與點(diǎn)B,使得4PAB于動(dòng)點(diǎn)所在直線(xiàn)的對(duì)稱(chēng)點(diǎn)
的周長(zhǎng)最小。P'存在,找出即可。
如圖③:如圖:③連接對(duì)稱(chēng)點(diǎn)與另一個(gè)定
D
已知NAOB以及角點(diǎn)。與動(dòng)點(diǎn)所在直線(xiàn)的交點(diǎn)
內(nèi)兩點(diǎn)點(diǎn)P與點(diǎn)Q,即是動(dòng)點(diǎn)的位置。然后解
角的兩邊上分別存二1題。
在M、N使得四邊形、R
PQMN的周長(zhǎng)最小。
微專(zhuān)題
1.(2023?德州)如圖,正方形A8C£)的邊長(zhǎng)為6,點(diǎn)E在8c上,CE=2.點(diǎn)M是對(duì)角線(xiàn)8。上的一個(gè)動(dòng)
點(diǎn),則EM+CM的最小值是()
第1題第2題
A.6/B.3A/5C.2A/13D.4^/13
2.(2023?資陽(yáng))如圖,正方形ABC。的對(duì)角線(xiàn)交于點(diǎn)。,點(diǎn)E是直線(xiàn)BC上一動(dòng)點(diǎn).若AB=4,則AE+OE
的最小值是()
A.472B.275+2C.2713D.2屈
A.1B.72C.V3D.2
4.(2023?廣安)如圖,菱形ABC。的邊長(zhǎng)為2,點(diǎn)P是對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)£、尸分別為邊A。、
OC的中點(diǎn),則PE+尸廠的最小值是()
A.2B.73C.1.5D.75
5.(2023?赤峰)如圖,菱形A8C。,點(diǎn)A、B、C、。均在坐標(biāo)軸上./A8C=120°,點(diǎn)A(-3,0),點(diǎn)E
是C£>的中點(diǎn),點(diǎn)尸是0c上的一動(dòng)點(diǎn),則尸。+PE的最小值是()
3
A.3B.5C.2A/2D.-73
2
6.(2023?安順)已知正方形ABC。的邊長(zhǎng)為4,E為C£>上一點(diǎn),連接AE并延長(zhǎng)交的延長(zhǎng)線(xiàn)于點(diǎn)R
過(guò)點(diǎn)D作DGLAF,交AF于點(diǎn)H,交BE于點(diǎn)G,N為EF的中點(diǎn),M為BD上一動(dòng)點(diǎn),分別連接MC,
MN.若S'DCG=J_,則MC+MN的最小值為_(kāi)_______
S"CE9
7.(2023?內(nèi)江)如圖,矩形ABCZ)中,AB=6,AD=4,點(diǎn)、E、E分別是AB、OC上的動(dòng)點(diǎn),EF//BC,則
AF+CE的最小值是.
8.(2023?賀州)如圖,在矩形A8CD中,AB=8,BC=6,E,尸分別是A。,A8的中點(diǎn),NAOC的平分線(xiàn)
交于點(diǎn)G,點(diǎn)尸是線(xiàn)段QG上的一個(gè)動(dòng)點(diǎn),則的周長(zhǎng)最小值為.
9.(2023?婁底)菱形A8C。的邊長(zhǎng)為2,NA8C=45°,點(diǎn)尸、。分別是8C、8。上的動(dòng)點(diǎn),C0+P。的最
小值為_(kāi)_______
10.(2023?眉山)如圖,點(diǎn)尸為矩形ABC。的對(duì)角線(xiàn)AC上一動(dòng)點(diǎn),點(diǎn)E為BC的中點(diǎn),連接PE,PB,若
AB=4,BC=4也,則PE+PB的最小值為
第10題第11題
11.(2023?濱州)如圖,在矩形A8C。中,AB=5,A£>=10.若點(diǎn)E是邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)£作EP
且分別交對(duì)角線(xiàn)AC、直線(xiàn)BC于點(diǎn)。、尸,則在點(diǎn)E移動(dòng)的過(guò)程中,AF+FE+EC的最小值為.
12.(2023?自貢)如圖,矩形ABC。中,AB=4,BC=2,G是的中點(diǎn),線(xiàn)段EF在邊AB上左右滑動(dòng),
13.(2023?泰州)如圖,正方形ABCD的邊長(zhǎng)為2,E為與點(diǎn)。不重合的動(dòng)點(diǎn),以為一邊作正方形DEFG.設(shè)
DE=di,點(diǎn)、F、G與點(diǎn)C的距離分別為d2、曲,則力+出+曲的最小值為()
A.72B.2C.2-N/2D.4
14.(2023?安徽)已知點(diǎn)。是邊長(zhǎng)為6的等邊△ABC的中心,點(diǎn)P在△ABC外,△ABC,/\PAB,APBC,
△PCA的面積分別記為So,Si,S2,S3.若SI+S2+S3=2SO,則線(xiàn)段0P長(zhǎng)的最小值是()
35/37省7a
A.C.38D.
F2~~2~
考點(diǎn)二:利用確定圓心的位置求最短路徑
知識(shí)回顧
1.解題思路:
通過(guò)確定圓心的位置,利用定點(diǎn)到圓心的距離加或減半徑解題。
2.確定圓心的方法:
方法①:到定點(diǎn)的距離等于定長(zhǎng)確定圓心。通常存在線(xiàn)段旋轉(zhuǎn)。
方法②:直徑所對(duì)的圓周角等于90°。找90°的角所對(duì)直線(xiàn)的中點(diǎn)。通常出現(xiàn)兩個(gè)角相等。
/-------------------\
微專(zhuān)題
15.(2023?泰安)如圖,四邊形ABC。為矩形,A8=3,BC=4,點(diǎn)尸是線(xiàn)段BC上一動(dòng)點(diǎn),點(diǎn)M為線(xiàn)段
4尸上一點(diǎn),ZADM=ZBAP,則的最小值為()
12
B.—
5
C.713--D.713-2
2
16.(2023?黃石)如圖,等邊△ABC中,AB=10,點(diǎn)E為高上的一動(dòng)點(diǎn),以BE為邊作等邊ABEF,連
接。尸,CF,貝!)/85=,FB+FD的最小值為
第16題第17題
17.(2023?柳州)如圖,在正方形ABC。中,A8=4,G是BC的中點(diǎn),點(diǎn)E是正方形內(nèi)一個(gè)動(dòng)點(diǎn),且EG
=2,連接DE,將線(xiàn)段。E繞點(diǎn)。逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段。F,連接CR則線(xiàn)段CP長(zhǎng)的最小值為.
18.(2023?無(wú)錫)△A3C是邊長(zhǎng)為5的等邊三角形,△OCE是邊長(zhǎng)為3的等邊三角形,直線(xiàn)8。與直線(xiàn)AE
交于點(diǎn)?如圖,若點(diǎn)D在△ABC內(nèi),ZDBC=20°,則/區(qū)4尸=°;現(xiàn)將△OCE繞點(diǎn)C旋轉(zhuǎn)
1周,在這個(gè)旋轉(zhuǎn)過(guò)程中,線(xiàn)段AF長(zhǎng)度的最小值是.
專(zhuān)題35最值問(wèn)題
考點(diǎn)一:利用對(duì)稱(chēng)求最值問(wèn)題
知識(shí)回顧
3.基本知識(shí)點(diǎn):
①兩點(diǎn)之間線(xiàn)段最短;②點(diǎn)到直線(xiàn)的距離最短。
4.求最值問(wèn)題的類(lèi)型
問(wèn)題基本圖形解題圖形解題思路與步驟
如圖①:如
圖,存在直線(xiàn)1
0.
以及直線(xiàn)外的
P.解題思路:找點(diǎn)作對(duì)
點(diǎn)P和點(diǎn)Q,直__________________1
稱(chēng)
線(xiàn)/上存在一點(diǎn)
解題步驟:
M,使得MP+
①?gòu)膯?wèn)題中確定定
MQ的值最小。
點(diǎn)與動(dòng)點(diǎn)。
如圖②:如
②作其中一個(gè)定點(diǎn)
圖,已知NMON2\N
/關(guān)于動(dòng)點(diǎn)所在直線(xiàn)
以及角內(nèi)一點(diǎn)
的對(duì)稱(chēng)點(diǎn)。通常情況
P,角的兩邊0M
O----------------M下其中一個(gè)定點(diǎn)的
與ON上存在點(diǎn)
o關(guān)于動(dòng)點(diǎn)所在直線(xiàn)
A與點(diǎn)B,使得
Pf的對(duì)稱(chēng)點(diǎn)存在,找出
△PAB的周長(zhǎng)最
即可。
小。
③連接對(duì)稱(chēng)點(diǎn)與另
如圖③:如
D一個(gè)定點(diǎn)。與動(dòng)點(diǎn)所
圖:已知/AOB
在直線(xiàn)的交點(diǎn)即是
以及角內(nèi)兩點(diǎn)
動(dòng)點(diǎn)的位置。然后解
點(diǎn)P與點(diǎn)Q,角
題。
的兩邊上分別
存在M、N使得
cB
四邊形PQMN的
周長(zhǎng)最小。
微專(zhuān)題
1.(2023?德州)如圖,正方形ABC。的邊長(zhǎng)為6,點(diǎn)E在BC上,CE=2.點(diǎn)〃是對(duì)角線(xiàn)
8。上的一個(gè)動(dòng)點(diǎn),則EM+CM的最小值是()
A.672B.345C.2A/13D.4屈
【分析】要求ME+MC的最小值,ME、MC不能直接求,可考慮通過(guò)作輔助線(xiàn)轉(zhuǎn)化ME,
MC的值,從而找出其最小值求解.
【解答】解:如圖,連接AE交80于M點(diǎn),
C關(guān)于8。對(duì)稱(chēng),
:.AE就是ME+MC的最小值,
:正方形A8CD中,點(diǎn)E是BC上的一定點(diǎn),且CE=6-2=4,
":62+42,
AE=y$2+42=2、13,
:.ME+MC的最小值是2反.
故選:C.
2.(2023?資陽(yáng))如圖,正方形ABC。的對(duì)角線(xiàn)交于點(diǎn)。點(diǎn)E是直線(xiàn)3C上一動(dòng)點(diǎn).若A5
C.2V13D.2屈
【分析】本題為典型的將軍飲馬模型問(wèn)題,需要通過(guò)軸對(duì)稱(chēng),作點(diǎn)A關(guān)于直線(xiàn)BC的對(duì)
稱(chēng)點(diǎn)A,再連接4。,運(yùn)用兩點(diǎn)之間線(xiàn)段最短得到A。為所求最小值,再運(yùn)用勾股定理
求線(xiàn)段AO的長(zhǎng)度即可.
【解答】解:如圖所示,作點(diǎn)A關(guān)于直線(xiàn)8C的對(duì)稱(chēng)點(diǎn)A,連接AO,其與3c的交點(diǎn)即
為點(diǎn)E,再作。尸,AB交A8于點(diǎn)R
:.AE^A'E,AE+OE^A'E+OE,當(dāng)且僅當(dāng)4,O,E在同一條線(xiàn)上的時(shí)候和最小,如圖所
示,此時(shí)AE+OE=A'E+OE=AO,
:正方形ABC。,點(diǎn)。為對(duì)角線(xiàn)的交點(diǎn),
?*-0F=FB=yAB=2-
與A關(guān)于BC對(duì)稱(chēng),
:.AB=BA'=4,
:.FA,=FB+BA'=2+4=6,
在中,oN=VFO2+FA/2=2^/10,
故選:D.
3.(2023?荷澤)如圖,在菱形ABC。中,AB=2,ZABC=60°,M是對(duì)角線(xiàn)BD上的一個(gè)
動(dòng)點(diǎn),CF=BF,則的最小值為()
A.1D.2
【分析】當(dāng)MA+MF的值最小時(shí),4M,尸三點(diǎn)共線(xiàn),即求4斤的長(zhǎng)度,根據(jù)題意判斷
△ABC為等邊三角形,且尸點(diǎn)為2C的中點(diǎn),根據(jù)直角三角形的性質(zhì),求出AF的長(zhǎng)度即
可.
【解答】解:當(dāng)A、M,P三點(diǎn)共線(xiàn)時(shí),即當(dāng)M點(diǎn)位于時(shí),"A+M/的值最小,
由菱形的性質(zhì)可知,
AB=BC,
XVZABC=60°,
/.△ABC為等邊三角形,
?一點(diǎn)為8C的中點(diǎn),AB=2,
:.AF.LBC,CF=FB=\,
在RtAABF中,AF=VAB2-BF2=^3.
故選:C.
4.(2023?廣安)如圖,菱形A3C。的邊長(zhǎng)為2,點(diǎn)尸是對(duì)角線(xiàn)AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)E、F
分別為邊A。、0c的中點(diǎn),則PE+PP的最小值是()
A.2B.73C.1.5D.V5
【分析】如圖,取AB的中點(diǎn)T,連接PT,FT.首先證明四邊形ADFT是平行四邊形,
推出AD=fT=2,再證明由尸F(xiàn)+PTN尸T=2,可得結(jié)論.
【解答】解:如圖,取的中點(diǎn)T,連接尸T,FT.
:四邊形ABC。是菱形,
J.CD//AB,CD=AB,
,;DF=CF,AT=TB,
:.DF=AT,DF//AT,
四邊形AOfT是平行四邊形,
:.AD=FT=2,
:四邊形ABC。是菱形,AE=DE,AT=TB,
:.E,T關(guān)于AC對(duì)稱(chēng),
:.PE=PT,
:.PE+PF=PT+PF,
":PF+PT^FT=2,
:.PE+PF^2,
:.PE+PF的最小值為2.
故選:A.
5.(2023?赤峰)如圖,菱形A3CD,點(diǎn)A、B、C、。均在坐標(biāo)軸上.NABC=120°,點(diǎn)A
(-3,0),點(diǎn)E是CD的中點(diǎn),點(diǎn)尸是0c上的一動(dòng)點(diǎn),則PD+PE的最小值是(
3
A.3B.5C.272D.-73
2
【分析】根據(jù)題意得,E點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)是8C的中點(diǎn)E,連接。E交AC與點(diǎn)P,
此時(shí)尸Q+PE有最小值,求出此時(shí)的最小值即可.
【解答】解:根據(jù)題意得,E點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)是BC的中點(diǎn)E,連接。E交AC與點(diǎn)
P,此時(shí)PD+PE有最小值為DE,
;.OA=OC=3,NDBC=60°,
.?.△BCD是等邊三角形,
:.DE=OC=3,
即PD+PE的最小值是3,
故選:A.
6.(2023?安順)已知正方形A8C。的邊長(zhǎng)為4,E為CD上一點(diǎn)、,連接AE并延長(zhǎng)交BC的
延長(zhǎng)線(xiàn)于點(diǎn)R過(guò)點(diǎn)。作。GLAR交AF于點(diǎn)H,交BF于點(diǎn)G,N為跖的中點(diǎn),M
為BD上一動(dòng)點(diǎn),分別連接MC,MN.若“DCG=L,則MC+MN的最小值為_(kāi)___.
S&FCE9
【分析】由正方形的性質(zhì),可得A點(diǎn)與C點(diǎn)關(guān)于BD對(duì)稱(chēng),則有MN+CM=MN+AM^AN,
所以當(dāng)A、M.N三點(diǎn)共線(xiàn)時(shí),MN+CM的值最小為AN,先證明△OCGs△/CE,再由
S
ADCG=1,可知生=工,分別求出。E=l,CE=3,CF=U,即可求出AN.
SAFCE9CF3
?.?四邊形ABC。是正方形,
二4點(diǎn)與C點(diǎn)關(guān)于8。對(duì)稱(chēng),
ACM=AM,
:.MN+CM=MN+AM>AN,
...當(dāng)A、M、N三點(diǎn)共線(xiàn)時(shí),MN+CM的值最小,
'JAD//CF,
:.ZDAE=ZF,
■:NDAE+NDEH=90°,
'."DG1AF,
;.NCDG+NDEH=90°,
:.ZDAE=ZCDG,
.\ZCDG=ZF,
二△OCGS"CE,
.?SADCG1
^AFCE9
?.?CD—_1,
CF3
???正方形邊長(zhǎng)為4,
:.CF=n,
':AD//CF,
.AD=DE=_1
"CFCET
:.DE=l,CE=3,
在RtZ\CE/中,EF1=CE1+CF2,
:.EF=yl22+122=3,
是EF的中點(diǎn),
:.EN=3417,
2
在RtZ\ADE中,EA2=AD2+Z)E2,
;.AE="+12=,
:.AN=5A,
2
:.MN+MC的最小值為殳叵,
2
故答案為:殳叵,
2
7.(2023?內(nèi)江)如圖,矩形A8CZ)中,43=6,4。=4,點(diǎn)E、/分別是AB、0c上的動(dòng)點(diǎn),
EF//BC,則AF+CE的最小值是
【分析】延長(zhǎng)8C至I]G,使CG=EF,連接FG,則四邊形EFGC是平行四邊形,得CE
=FG,貝!JAF+CE=AF+PG,可知當(dāng)點(diǎn)A、F、G三點(diǎn)共線(xiàn)時(shí),AF+CE的值最小為AG,
利用勾股定理求出AG的長(zhǎng)即可.
【解答】解:延長(zhǎng)BC到G,使CG=ER連接FG,
四邊形EFGC是平行四邊形,
:.CE=FG,
:.AF+CE=AF+FG,
當(dāng)點(diǎn)A、F、G三點(diǎn)共線(xiàn)時(shí),AF+CE的值最小為AG,
由勾股定理得,AG=JAB?+BG2=個(gè)+(4+4)2=I。,
C.AF+CE的最小值為10,
故答案為:10.
8.(2023?賀州)如圖,在矩形中,AB=8,BC=6,E,尸分別是A。,42的中點(diǎn),
ZADC的平分線(xiàn)交AB于點(diǎn)G,點(diǎn)、P是線(xiàn)段DG上的一個(gè)動(dòng)點(diǎn),則的周長(zhǎng)最小值
【分析】如圖,在DC上截取使得DT=DE,連接FT,過(guò)點(diǎn)T作THLAB于點(diǎn)H.利
用勾股定理求出FT=437,EF=5,證明PE+PF=PF+PT》FT,可得結(jié)論.
【解答】解:如圖,在。C上截取。T,使得DT=DE,連接FT,過(guò)點(diǎn)T作TT/LAB于點(diǎn)
H.
:四邊形ABC。是矩形,
AZA^ZADT=90°,
VZAHT=9Q°,
四邊形AHTD是矩形,
':AE=DE=^AD=3.AF=FB=^AB=4,
22
:.AH=DT=3,HF^AF-AH=4-3=1,HT=AD=6,
FT=VFH2+TH2=Vl2+62=,
平分NADC,DE=DT,
:.E、T關(guān)于£>G對(duì)稱(chēng),
:.PE=PT,
:.PE+PF=PF+PT^FT=V37,
,?"£F=VAE2+AF2=VS2+42=5'
:AEFP的周長(zhǎng)的最小值為5+V37.
故答案為:5+V37.
9.(2023?婁底)菱形ABC。的邊長(zhǎng)為2,NABC=45°,點(diǎn)P、Q分別是2C、2D上的動(dòng)點(diǎn),
CQ+PQ的最小值為.
【分析】連接A。,作AF/LBC于H,利用SAS證明△AB。也△CBQ,得AQ=C。,當(dāng)點(diǎn)
A、。、P共線(xiàn),4。+尸。的最小值為A”的長(zhǎng),再求出A”的長(zhǎng)即可.
【解答】解:連接A。,作AH,2c于
:.AB=CB,ZABQ=ZCBQ,
:.AABQ^/\CBQ(SAS),
:.AQ^CQ,
當(dāng)點(diǎn)A、。、P共線(xiàn),AQ+PQ的最小值為AH的長(zhǎng),
':AB=2,ZABC=45°,
:.AH=yf2>
:.CQ+PQ的最小值為加,
故答案為:V2.
10.(2023?眉山)如圖,點(diǎn)尸為矩形A8CZ)的對(duì)角線(xiàn)AC上一動(dòng)點(diǎn),點(diǎn)E為BC的中點(diǎn),連
接PE,PB,若A8=4,BC=4A/3,則PE+P8的最小值為.
【分析】作點(diǎn)B關(guān)于AC的對(duì)稱(chēng)點(diǎn)B',交AC于點(diǎn)F,連接B'E交AC于點(diǎn)P,則PE+PB
的最小值為夕E的長(zhǎng)度;然后求出B'8和BE的長(zhǎng)度,再利用勾股定理
即可求出答案.
【解答】解:如圖,作點(diǎn)2關(guān)于AC的對(duì)稱(chēng)點(diǎn)9,交AC于點(diǎn)「連接2,E交AC于點(diǎn)
P,則PE+PB的最小值為8'E的長(zhǎng)度,
?.?四邊形ABCD為矩形,
:.AB=CD=4,ZABC=90°,
在RtzXABC中,AB=4,BC=4百,
;.tan/ACB=^=近,
BC3
AZACB=30°,
由對(duì)稱(chēng)的性質(zhì)可知,B'B=2BF,B'B±AC,
:.BF=^BC=243,NCBF=6。。,
:.B'B=2BF=4如,
,:BE=BF,ZCBF^6Q°,
.?.△BE尸是等邊三角形,
;.BE=BF=B'F,
...△BE8是直角三角形,
22=22=6;
.?㈤£=VB/B-BEV(4V3)-(2V3)
J.PE+PB的最小值為6,
故答案為:6.
11.(2023?濱州)如圖,在矩形ABC。中,AB=5,40=10.若點(diǎn)E是邊A。上的一個(gè)動(dòng)點(diǎn),
過(guò)點(diǎn)E作EFLAC且分別交對(duì)角線(xiàn)AC、直線(xiàn)BC于點(diǎn)。、F,則在點(diǎn)E移動(dòng)的過(guò)程中,
AF+FE+EC的最4、值為.
【分析】如圖,過(guò)點(diǎn)E作于點(diǎn)利用相似三角形的性質(zhì)求出EH,EF,設(shè)
=x,則D£=10-尤-9=至-無(wú),因?yàn)檠?是定值,所以AF+CE的值最小時(shí),AF+EF+CE
22
的值最小,SAF+CE=y]s2+x2-X)2+52>可知欲求AF+CE的最小值相當(dāng)于
在x軸上找一點(diǎn)P(x,0),使得尸到A(0,5),8(」立,5)的距離和最小,如圖1中,
2
作點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A',連接54'交x軸于點(diǎn)尸,連接AP,此時(shí)朋+P8的值最
小,最小值為線(xiàn)段A'8的長(zhǎng),由此即可解決問(wèn)題.
【解答】解:如圖,過(guò)點(diǎn)E作于點(diǎn)
:四邊形ABC。是矩形,
AZB=ZBAD=ZBHE=90°,
四邊形A8HE是矩形,
:.EH=AB=5,
VBC=AD=10,
\AC=ylA』2+BC2=452+102=5疾,
':EF±AC,
:.ZCOF^90°,
AZEFH+ZACB=90°,
':ZBAC+ZACB^9Q0,
:.ZEFH=ZBAC,
:.△EHFsbCBA,
?EH=FH=EF
"CBABAC,
-5_FH_EF
"1055A/5(
:.FH=>,
22
1S.BF=x,貝ijOE=10-x-$=K-JC,
22
是定值,
:.AF+CE的值最小時(shí),AF+EF+CE的值最小,
VAF+CE=752+X2+^(^,X)2+52)
欲求AF+CE的最小值相當(dāng)于在x軸上找一點(diǎn)尸(x,0),使得P到4(0,5),8(生,
2
5)的距離和最小,如圖1中,
作點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn),連接BA'交尤z軸于點(diǎn)P,連接AP,此時(shí)B4+PB的值最
小,最小值為線(xiàn)段A'2的長(zhǎng),
VA,(0,-5),B(45),
2
?1?A,B=J1O2+吟)2=學(xué)
C.AF+CE的最小值為空,
2
:.AF+EF+CE的最〃、值為空+_^_.
22
解法二:過(guò)點(diǎn)C作CC'//EF,使得CC'=EF,連接C'F.
C
':EF=CC',EF//CC',
...四邊形KBC'C是平行四邊形,
:.EC=FC',
":EF.LAC,
:.AC±CC',
AZACC=90°,
=岳232=J(5遙產(chǎn)+鳥(niǎo)藥喑
:.AF+EC=AF+FC'》AC'=—,
2
:.AF+EF+CE的最小值為空+包區(qū).
22
故答案為:空+且巨
22
12.(2023?自貢)如圖,矩形A8CD中,AB=4,BC=2,G是A。的中點(diǎn),線(xiàn)段EF在邊
A8上左右滑動(dòng),若EF=1,貝UGE+CF的最小值為.
【分析】解法一:利用已知可以得出GC,EF長(zhǎng)度不變,求出GE+C尸最小時(shí)即可得出
四邊形CGE尸周長(zhǎng)的最小值,利用軸對(duì)稱(chēng)得出E,尸位置,即可求出.
2222
解法二:設(shè)AE=x,則BF=3-x,根據(jù)勾股定理可得:EG+CF=y]x+l+A/(3-X)+2,
由勾股定理構(gòu)建另一矩形EFGH,根據(jù)線(xiàn)段的性質(zhì):兩點(diǎn)之間線(xiàn)段最短可得結(jié)論.
【解答】解:解法一:如圖,作G關(guān)于的對(duì)稱(chēng)點(diǎn)G,在CD上截取CW=1,然后連
接8G交A3于E,在E2上截取所=1,此時(shí)GE+C廠的值最小,
":CH=EF=\,CH//EF,
...四邊形EFCH是平行四邊形,
:.EH=CF,
:.G'H=EG'+EH=EG+CF,
':AB=4,BC=AD=2,G為邊AO的中點(diǎn),
...£>G'=A£)+AG'=2+1=3,£)8=4-1=3,
22=3>
由勾股定理得:HG'=^3+3V2
即GE+CF的最小值為3祀.
解法二:?.?AG=』AD=I,
2
設(shè)AE^x,則BF=AB-EF-AE=4-x-1=3-尤,
22
由勾股定理得:EG+CF^^/x2+12(3-X)+2;
如圖,矩形EFG”中,EH=3,GH=2,GQ=1,
22+22
:.EP+PQ=y](3-X)+27X+1'
當(dāng)E,P,。三點(diǎn)共線(xiàn)時(shí),EP+PQ最小,最小值是3&,
即EG+CF的最小值是372-
故答案為:3M.
13.(2023?泰州)如圖,正方形ABC。的邊長(zhǎng)為2,E為與點(diǎn)。不重合的動(dòng)點(diǎn),以DE為一
邊作正方形。EFG.設(shè)。£=力,點(diǎn)尸、G與點(diǎn)C的距離分別為心、曲,則力+必+力的最
小值為()
A.72B.2C.242D.4
【分析】連接AE,那么,AE=CG,所以這三個(gè)1的和就是AE+EF+FC,所以大于等于
AC,故當(dāng)AEFC四點(diǎn)共線(xiàn)有最小值,最后求解,即可求出答案.
【解答】解:如圖,連接AE,
?.?四邊形。EFG是正方形,
NE£)G=90°,EF=DE=DG,
:四邊形ABC。是正方形,
:.AD^CD,ZADC^90°,
ZADE=ZCDG,
:.AADE^/\CDG(SAS),
:.AE=CG,
I.di+d2+d3=E尸+C/+AE,
...點(diǎn)A,E,F,C在同一條線(xiàn)上時(shí),EF+CF+AE</h,即力+“2+為最小,
連接AC,
:.di+d2+d3最小值為AC,
在RtZXABC中,AC=?AB=2近,
.,.力+必+43最小=AC=2*\/5,
故選:C.
14.(2023?安徽)己知點(diǎn)0是邊長(zhǎng)為6的等邊△ABC的中心,點(diǎn)尸在△48C外,AABC,
△B4B,APBC,△PCA的面積分別記為So,Si,S2,S3.若SI+S2+S3=2SO,則線(xiàn)段0P
長(zhǎng)的最小值是()
76773
22
【分析】如圖,不妨假設(shè)點(diǎn)P在的左側(cè),證明△外2的面積是定值,過(guò)點(diǎn)尸作A8的
平行線(xiàn)PM,連接CO延長(zhǎng)CO交AB于點(diǎn)R,交PM于點(diǎn)T.因?yàn)椤魈?的面積是定值,
推出點(diǎn)尸的運(yùn)動(dòng)軌跡是直線(xiàn)求出0T的值,可得結(jié)論.
【解答】解:如圖,不妨假設(shè)點(diǎn)尸在的左側(cè),M,
fA
SAPAB+S/\ABC=SAPBC+SAMC,/
Sl+So=S2+S3,
*/SI+S2+S3=2SO,
Si+5i+So=2,
Si=—So,
2
???△ABC是等邊三角形,邊長(zhǎng)為6,
.?.So=返X62=9我,
=973
過(guò)點(diǎn)P作AB的平行線(xiàn)PM,連接CO延長(zhǎng)CO交48于點(diǎn)R,交于點(diǎn)T.
..?△以8的面積是定值,
點(diǎn)P的運(yùn)動(dòng)軌跡是直線(xiàn)PM,
:。是△A3C的中心,
ACTLAB,CTLPM,
:.LAB.RT=^^,CR=3我,O7?=Vs,
22
2
OT=OR+TR=^^~,
2
?:OP、OT,
OP的最小值為顯巨,
當(dāng)點(diǎn)P在②區(qū)域時(shí),同法可得OP的最小值為工返,
2
如圖,當(dāng)點(diǎn)P在①③⑤區(qū)域時(shí),0P的最小值為顯巨,當(dāng)點(diǎn)P在②④⑥區(qū)域時(shí),最小值
為苧
.?.-5--M--一---電---
22
考點(diǎn)二:利用確定圓心的位置求最短路徑
知識(shí)回顧
3.解題思路:
通過(guò)確定圓心的位置,利用定點(diǎn)到圓心的距離加或減半徑解題。
4.確定圓心的方法:
方法①:到定點(diǎn)的距離等于定長(zhǎng)確定圓心。通常存在線(xiàn)段旋轉(zhuǎn)。
方法②:直徑所對(duì)的圓周角等于90。。找90°的角所對(duì)直線(xiàn)的中點(diǎn)。通常出現(xiàn)兩
個(gè)角相等。
微專(zhuān)題
k___________________/
15.(2023?泰安)如圖,四邊形A8C。為矩形,AB=3,8c=4,點(diǎn)P是線(xiàn)段8C上一動(dòng)點(diǎn),
點(diǎn)M為線(xiàn)段A尸上一點(diǎn),ZADM=ZBAP,則的最小值為()
512f—3rrr
A.-B.—C.V13--D.V13-2
252
【分析】如圖,取AQ的中點(diǎn)。,連接08,OM.證明/AAW=90°,推出OM=』AQ
2
=2,點(diǎn)M的運(yùn)動(dòng)軌跡是以。為圓心,2為半徑的。。.利用勾股定理求出。8,可得結(jié)
論.
【解答】解:如圖,取的中點(diǎn)。,連接。2,OM.
???四邊形ABC。是矩形,
:.ZBAD^90°,AD=BC=4,
:.ZBAP+ZDAM^9Q°,
??ZADM=ZBAP,
:.ZADM+ZDAM^9G°,
AZAMD=90°,
:A0=0r)=2,
:.OM=^AD=2,
2
.?.點(diǎn)M的運(yùn)動(dòng)軌跡是以。為圓心,2為半徑的O。.
■:°B=VAB2+AO2=VS2+22=(^13,
C.BM^OB-OM=y[}2-2,
的最小值為-2.
故選:D.
16.(2023?黃石)如圖,等邊AABC中,AB=10,點(diǎn)E為高A。上的一動(dòng)點(diǎn),以BE為邊作
等邊ABEF,連接。RCF,則NBCE=,F2+陽(yáng)的最小值為.
【分析】首先證明△BAE也△■BCP(SAS),推出/氏4石=/2。尸=30°,作點(diǎn)。關(guān)于CP
的對(duì)稱(chēng)點(diǎn)G,連接CG,DG,BG,BG交CF于點(diǎn)、F',連接。戶(hù),此時(shí)3戶(hù)+
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 員拉票行為檢討書(shū)
- 環(huán)境工程原理吸收課件
- 風(fēng)光接入儲(chǔ)能技術(shù)方案
- 作業(yè)設(shè)備安全管理制度
- 佳能公司目標(biāo)管理制度
- 供暖公司內(nèi)控管理制度
- 供水客戶(hù)服務(wù)管理制度
- 供水設(shè)施日常管理制度
- 預(yù)制樓梯的深化詳圖識(shí)圖
- 供電公司安保管理制度
- 2024年地理中考模擬考試地理(貴州貴陽(yáng)卷)(A4考試版)
- 2025年廣東省深圳市中考數(shù)學(xué)高頻考點(diǎn)綜合訓(xùn)練題及答案
- 職業(yè)道德與法治知識(shí)點(diǎn)總結(jié)中職高教版
- 2025至2030中國(guó)黃原膠生產(chǎn)技術(shù)行業(yè)發(fā)展形勢(shì)及未來(lái)前景展望報(bào)告
- (高清版)DB50∕T 689-2016 合成鉆石鑒定技術(shù)規(guī)范
- 建筑工程施工安全服務(wù)方案及質(zhì)量保障措施
- 行政執(zhí)法三項(xiàng)制度培訓(xùn)課件
- 公司加減分管理制度
- 中小學(xué)科學(xué)教育問(wèn)題試題及答案教師資格筆試
- DB51-T 3267-2025 公路應(yīng)急搶通保通技術(shù)規(guī)程
- 科技合作居間協(xié)議
評(píng)論
0/150
提交評(píng)論