2024屆四川省南充市四校聯考中考三模數學試題含解析_第1頁
2024屆四川省南充市四校聯考中考三模數學試題含解析_第2頁
2024屆四川省南充市四校聯考中考三模數學試題含解析_第3頁
2024屆四川省南充市四校聯考中考三模數學試題含解析_第4頁
2024屆四川省南充市四校聯考中考三模數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川省南充市四校聯考中考三模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6米,C是OA的中點,點D在弧AB上,CD∥OB,則圖中休閑區(陰影部分)的面積是()A.米2 B.米2 C.米2 D.米22.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數為()A.40° B.50° C.60° D.70°3.某班組織了針對全班同學關于“你最喜歡的一項體育活動”的問卷調查后,繪制出頻數分布直方圖,由圖可知,下列結論正確的是()A.最喜歡籃球的人數最多 B.最喜歡羽毛球的人數是最喜歡乒乓球人數的兩倍C.全班共有50名學生 D.最喜歡田徑的人數占總人數的10%4.如圖,平面直角坐標系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點B坐標為(6,4),反比例函數的圖象與AB邊交于點D,與BC邊交于點E,連結DE,將△BDE沿DE翻折至△B'DE處,點B'恰好落在正比例函數y=kx圖象上,則k的值是()A. B. C. D.5.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+6.有個零件(正方體中間挖去一個圓柱形孔)如圖放置,它的主視圖是A. B. C. D.7.如圖,一把矩形直尺沿直線斷開并錯位,點E、D、B、F在同一條直線上,若∠ADE=125°,則∠DBC的度數為()A.125° B.75° C.65° D.55°8.如果關于x的方程x2﹣x+1=0有實數根,那么k的取值范圍是()A.k>0 B.k≥0 C.k>4 D.k≥49.對于有理數x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數,等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.1110.如圖,點ABC在⊙O上,OA∥BC,∠OAC=19°,則∠AOB的大小為()A.19° B.29° C.38° D.52°11.下列各數是不等式組的解是()A.0 B. C.2 D.312.下列命題中錯誤的有()個(1)等腰三角形的兩個底角相等(2)對角線相等且互相垂直的四邊形是正方形(3)對角線相等的四邊形為矩形(4)圓的切線垂直于半徑(5)平分弦的直徑垂直于弦A.1B.2C.3D.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.對于任意非零實數a、b,定義運算“”,使下列式子成立:,,,,…,則ab=.14.不等式組的解集是__.15.計算:=_____________.16.可燃冰是一種新型能源,它的密度很小,可燃冰的質量僅為.數字0.00092用科學記數法表示是__________.17.某小區購買了銀杏樹和玉蘭樹共150棵用來美化小區環境,購買銀杏樹用了12000元,購買玉蘭樹用了9000元.已知玉蘭樹的單價是銀杏樹單價的1.5倍,求銀杏樹和玉蘭樹的單價.設銀杏樹的單價為x元,可列方程為______.18.已知邊長為2的正六邊形ABCDEF在平面直角坐標系中的位置如圖所示,點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續翻轉,每次翻轉60°,經過2018次翻轉之后,點B的坐標是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為落實“美麗撫順”的工作部署,市政府計劃對城區道路進行了改造,現安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?20.(6分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.21.(6分)如圖1,已知直線l:y=﹣x+2與y軸交于點A,拋物線y=(x﹣1)2+m也經過點A,其頂點為B,將該拋物線沿直線l平移使頂點B落在直線l的點D處,點D的橫坐標n(n>1).(1)求點B的坐標;(2)平移后的拋物線可以表示為(用含n的式子表示);(3)若平移后的拋物線與原拋物線相交于點C,且點C的橫坐標為a.①請寫出a與n的函數關系式.②如圖2,連接AC,CD,若∠ACD=90°,求a的值.22.(8分)已知BD平分∠ABF,且交AE于點D.(1)求作:∠BAE的平分線AP(要求:尺規作圖,保留作圖痕跡,不寫作法);(2)設AP交BD于點O,交BF于點C,連接CD,當AC⊥BD時,求證:四邊形ABCD是菱形.23.(8分)綜合與探究:如圖,已知在△ABC中,AB=AC,∠BAC=90°,點A在x軸上,點B在y軸上,點在二次函數的圖像上.(1)求二次函數的表達式;(2)求點A,B的坐標;(3)把△ABC沿x軸正方向平移,當點B落在拋物線上時,求△ABC掃過區域的面積.24.(10分)某中學為了解八年級學習體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A、B、C、D四個等級.請根據兩幅統計圖中的信息回答下列問題:(1)本次抽樣調查共抽取了多少名學生?(2)求測試結果為C等級的學生數,并補全條形圖;(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名.25.(10分)如圖,在□ABCD中,對角線AC、BD相交于點O,點E在BD的延長線上,且△EAC是等邊三角形.(1)求證:四邊形ABCD是菱形.(2)若AC=8,AB=5,求ED的長.26.(12分)計算:.27.(12分)如圖,一次函數y=k1x+b(k1≠0)與反比例函數的圖象交于點A(-1,2),B(m,-1).(1)求一次函數與反比例函數的解析式;(2)在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

連接OD,∵弧AB的半徑OA長是6米,C是OA的中點,∴OC=OA=×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴.又∵,∴∠DOC=60°.∴(米2).故選C.2、B【解析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.3、C【解析】【分析】觀察直方圖,根據直方圖中提供的數據逐項進行分析即可得.【詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數最多,故A選項錯誤;B.最喜歡羽毛球的人數是最喜歡田徑人數的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學生,故C選項正確;D.最喜歡田徑的人數占總人數的=8%,故D選項錯誤,故選C.【點睛】本題考查了頻數分布直方圖,從直方圖中得到必要的信息進行解題是關鍵.4、B【解析】

根據矩形的性質得到,CB∥x軸,AB∥y軸,于是得到D、E坐標,根據勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據軸對稱的性質得到BF=B′F,BB′⊥ED求得BB′,設EG=x,根據勾股定理即可得到結論.【詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點B坐標為(6,1),∴D的橫坐標為6,E的縱坐標為1.∵D,E在反比例函數的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【點睛】本題考查了翻折變換(折疊問題),矩形的性質,勾股定理,熟練掌握折疊的性質是解題的關鍵.5、C【解析】

過點C作CM⊥AB,垂足為M,根據勾股定理求出BC的長,再根據DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數值計算即可.【詳解】過點C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點睛】本題考查了勾股定理,解題的關鍵是熟練的掌握勾股定理的運算.6、C【解析】

根據主視圖的定義判斷即可.【詳解】解:從正面看一個正方形被分成三部分,兩條分別是虛線,故正確.故選:.【點睛】此題考查的是主視圖的判斷,掌握主視圖的定義是解決此題的關鍵.7、D【解析】

延長CB,根據平行線的性質求得∠1的度數,則∠DBC即可求得.【詳解】延長CB,延長CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°?∠1=180°?125°=55°.故答案選:D.【點睛】本題考查的知識點是平行線的性質,解題的關鍵是熟練的掌握平行線的性質.8、D【解析】

由被開方數非負結合根的判別式△≥0,即可得出關于k的一元一次不等式組,解之即可得出k的取值范圍.【詳解】∵關于x的方程x2-x+1=0有實數根,∴,解得:k≥1.故選D.【點睛】本題考查了根的判別式,牢記“當△≥0時,方程有實數根”是解題的關鍵.9、B【解析】

先由運算的定義,寫出3△5=25,4△7=28,得到關于a、b、c的方程組,用含c的代數式表示出a、b.代入2△2求出值.【詳解】由規定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點睛】本題考查了新運算、三元一次方程組的解法.解決本題的關鍵是根據新運算的意義,正確的寫出3△5=25,4△7=28,2△2.10、C【解析】

由AO∥BC,得到∠ACB=∠OAC=19°,根據圓周角定理得到∠AOB=2∠ACB=38°.【詳解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故選:C.【點睛】本題考查了圓周角定理與平行線的性質.解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應用是解此題的關鍵.11、D【解析】

求出不等式組的解集,判斷即可.【詳解】,由①得:x>-1,由②得:x>2,則不等式組的解集為x>2,即3是不等式組的解,故選D.【點睛】此題考查了解一元一次不等式組,熟練掌握運算法則是解本題的關鍵.12、D【解析】分析:根據等腰三角形的性質、正方形的判定定理、矩形的判定定理、切線的性質、垂徑定理判斷即可.詳解:等腰三角形的兩個底角相等,(1)正確;對角線相等、互相平分且互相垂直的四邊形是正方形,(2)錯誤;對角線相等的平行四邊形為矩形,(3)錯誤;圓的切線垂直于過切點的半徑,(4)錯誤;平分弦(不是直徑)的直徑垂直于弦,(5)錯誤.故選D.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題分析:根據已知數字等式得出變化規律,即可得出答案:∵,,,,…,∴。14、2≤x<1【解析】

分別解兩個不等式得到x<1和x≥2,然后根據大小小大中間找確定不等數組的解集.【詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【點睛】本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集.解集的規律:同大取大;同小取小;大小小大中間找;大大小小找不到.15、【解析】分析:按單項式乘以多項式的法則將括號去掉,在合并同類項即可.詳解:原式=.故答案為:.點睛:熟記整式乘法和加減法的相關運算法則是正確解答這類題的關鍵.16、9.2×10﹣1.【解析】

根據科學記數法的正確表示為,由題意可得0.00092用科學記數法表示是9.2×10﹣1.【詳解】根據科學記數法的正確表示形式可得:0.00092用科學記數法表示是9.2×10﹣1.故答案為:9.2×10﹣1.【點睛】本題主要考查科學記數法的正確表現形式,解決本題的關鍵是要熟練掌握科學記數法的正確表現形式.17、【解析】

根據銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據“某小區購買了銀杏樹和玉蘭樹共1棵”列出方程即可.【詳解】設銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據題意,得:1.故答案為:1.【點睛】本題考查了由實際問題抽象出分式方程,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.18、(4033,)【解析】

根據正六邊形的特點,每6次翻轉為一個循環組循環,用2018除以6,根據商和余數的情況確定出點B的位置,經過第2017次翻轉之后,點B的位置不變,仍在x軸上,由A(﹣2,0),可得AB=2,即可求得點B離原點的距離為4032,所以經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置(如圖所示),則△BB′C為等邊三角形,可求得BN=NC=1,B′N=,由此即可求得經過2018次翻轉之后點B的坐標.然后求出翻轉前進的距離,過點C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后寫出點C的坐標即可.【詳解】設2018次翻轉之后,在B′點位置,∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續翻轉,每次翻轉60°,∴每6次翻轉為一個循環組,∵2018÷6=336余2,∴經過2016次翻轉為第336個循環,點B在初始狀態時的位置,而第2017次翻轉之后,點B的位置不變,仍在x軸上,∵A(﹣2,0),∴AB=2,∴點B離原點的距離=2×2016=4032,∴經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置,則△BB′C為等邊三角形,此時BN=NC=1,B′N=,故經過2018次翻轉之后,點B的坐標是:(4033,).故答案為(4033,).【點睛】本題考查的是正多邊形和圓,涉及到坐標與圖形變化-旋轉,正六邊形的性質,確定出最后點B所在的位置是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.【解析】

(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據工作時間=工作總量÷工作效率結合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設安排甲隊工作m天,則安排乙隊工作天,根據總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結合總費用不超過145萬元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.【詳解】(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據題意得:,解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x=×40=60,答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;(2)設安排甲隊工作m天,則安排乙隊工作天,根據題意得:7m+5×≤145,解得:m≥10,答:至少安排甲隊工作10天.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量間的關系,正確列出一元一次不等式.20、(1)見解析;(2)見解析.【解析】

(1)先判定,可得,再根據是的中線,即可得到,依據,即可得出四邊形是平行四邊形;(2)先判定,即可得到,依據,可得根據是的中線,可得,進而得出四邊形是矩形.【詳解】證明:(1)是的中點,,,,又,,,又是的中線,,又,四邊形是平行四邊形;(2),,∴,即,,又,,又是的中線,,又四邊形是平行四邊形,四邊形是矩形.【點睛】本題主要考查了平行四邊形、矩形的判定,等腰三角形的性質以及相似三角形的性質的運用,解題時注意:對角線相等的平行四邊形是矩形.21、(1)B(1,1);(2)y=(x﹣n)2+2﹣n.(3)a=;a=+1.【解析】

1)首先求得點A的坐標,再求得點B的坐標,用h表示出點D的坐標后代入直線的解析式即可驗證答案。(2)①根據兩種不同的表示形式得到m和h之間的函數關系即可。②點C作y軸的垂線,垂足為E,過點D作DF⊥CE于點F,證得△ACE~△CDF,然后用m表示出點C和點D的坐標,根據相似三角形的性質求得m的值即可。【詳解】解:(1)當x=0時候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入y=(x﹣1)2+m,得1+m=2∴m=1.∴y=(x﹣1)2+1,∴B(1,1)(2)由(1)知,該拋物線的解析式為:y=(x﹣1)2+1,∵∵D(n,2﹣n),∴則平移后拋物線的解析式為:y=(x﹣n)2+2﹣n.故答案是:y=(x﹣n)2+2﹣n.(3)①∵C是兩個拋物線的交點,∴點C的縱坐標可以表示為:(a﹣1)2+1或(a﹣n)2﹣n+2由題意得(a﹣1)2+1=(a﹣n)2﹣n+2,整理得2an﹣2a=n2﹣n∵n>1∴a==.②過點C作y軸的垂線,垂足為E,過點D作DF⊥CE于點F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴=.又∵C(a,a2﹣2a+2),D(2a,2﹣2a),∴AE=a2﹣2a,DF=m2,CE=CF=a∴=∴a2﹣2a=1解得:a=±+1∵n>1∴a=>∴a=+1【點睛】本題主要考查二次函數的應用和相似三角形的判定與性質,需綜合運用各知識求解。22、(1)見解析:(2)見解析.【解析】試題分析:(1)根據角平分線的作法作出∠BAE的平分線AP即可;(2)先證明△ABO≌△CBO,得到AO=CO,AB=CB,再證明△ABO≌△ADO,得到BO=DO.由對角線互相平分的四邊形是平行四邊形及有一組鄰邊相等的平行四邊形是菱形即可證明四邊形ABCD是菱形.試題解析:(1)如圖所示:(2)如圖:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四邊形ABCD是平行四邊形,∵AB=CB,∴平行四邊形ABCD是菱形.考點:1.菱形的判定;2.作圖—基本作圖.23、(1);(2);(3).【解析】

(1)將點代入二次函數解析式即可;(2)過點作軸,證明即可得到即可得出點A,B的坐標;(3)設點的坐標為,解方程得出四邊形為平行四邊形,求出AC,AB的值,通過掃過區域的面積=代入計算即可.【詳解】解:(1)∵點在二次函數的圖象上,.解方程,得∴二次函數的表達式為.(2)如圖1,過點作軸,垂足為..,.在和中,∵,.∵點的坐標為,..(3)如圖2,把沿軸正方向平移,當點落在拋物線上點處時,設點的坐標為.解方程得:(舍去)或由平移的性質知,且,∴四邊形為平行四邊形,.掃過區域的面積==.【點睛】本題考查了二次函數與幾何綜合問題,涉及全等三角形的判定與性質,平行四邊形的性質與判定,勾股定理解直角三角形,解題的關鍵是靈活運用二次函數的性質與幾何的性質.24、(1)50名;(2)16名;見解析;(3)56名.【解析】試題分析:根據A等級的人數和百分比求出總人數;根據總人數和A、B、D三個等級的人數求出C等級的人數;利用總人數乘以D等級人數的百分比得出答案.試題解析:(1)10÷20%=50(名)答:本次抽樣共抽取了50名學生.(2)50-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論