




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在區間上隨機取一個數,使得成立的概率為等差數列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.112.已知集合,,,則集合()A. B. C. D.3.已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數的值為()A. B. C. D.4.設P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},則A.PQ B.QPC.Q D.Q5.若的二項式展開式中二項式系數的和為32,則正整數的值為()A.7 B.6 C.5 D.46.已知,則下列關系正確的是()A. B. C. D.7.設,為非零向量,則“存在正數,使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件8.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數,黑點為陰數.若從這10個數中任取3個數,則這3個數中至少有2個陽數且能構成等差數列的概率為()A. B. C. D.9.某市氣象部門根據2018年各月的每天最高氣溫平均數據,繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢10.設雙曲線(a>0,b>0)的一個焦點為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標準方程為()A. B.C. D.11.已知集合,,則=()A. B. C. D.12.已知集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數列滿足遞推公式,且,則___________.14.對任意正整數,函數,若,則的取值范圍是_________;若不等式恒成立,則的最大值為_________.15.在正奇數非減數列中,每個正奇數出現次.已知存在整數、、,對所有的整數滿足,其中表示不超過的最大整數.則等于______.16.已知一組數據,1,0,,的方差為10,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統計成績后得到如下列聯表:分數不少于120分分數不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯表;并判斷是否有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”;(2)①按照分層抽樣的方法,在上述樣本中從分數不少于120分和分數不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數是,求的分布列(概率用組合數算式表示);②若將頻率視為概率,從全校高三該次檢測數學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)18.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個特征向量為α=,A的逆矩陣A-1對應的變換將點(3,1)變為點(1,1).求實數a,k的值.19.(12分)已知公比為正數的等比數列的前項和為,且,.(1)求數列的通項公式;(2)設,求數列的前項和.20.(12分)已知函數,.(1)當時,求函數的值域;(2),,求實數的取值范圍.21.(12分)已知函數,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.22.(10分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規則如下:抽獎者擲各面標有點數的正方體骰子次,若擲得點數大于,則可繼續在抽獎箱中抽獎;否則獲得三等獎,結束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數學期望不超過元,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由題意,本題符合幾何概型,只要求出區間的長度以及使不等式成立的的范圍區間長度,利用幾何概型公式可得概率,即等差數列的公差,利用條件,求得,從而求得,解不等式求得結果.【詳解】由題意,本題符合幾何概型,區間長度為6,使得成立的的范圍為,區間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關幾何概型與等差數列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數列的通項公式,屬于基礎題目.2.D【解析】
根據集合的混合運算,即可容易求得結果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎題.3.D【解析】
設,,聯立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據,得到方程,即可求出參數的值;【詳解】解:設,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應用,弦長公式的應用,屬于中檔題.4.C【解析】
解:因為P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此選C5.C【解析】
由二項式系數性質,的展開式中所有二項式系數和為計算.【詳解】的二項展開式中二項式系數和為,.故選:C.【點睛】本題考查二項式系數的性質,掌握二項式系數性質是解題關鍵.6.A【解析】
首先判斷和1的大小關系,再由換底公式和對數函數的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.7.D【解析】
充分性中,由向量數乘的幾何意義得,再由數量積運算即可說明成立;必要性中,由數量積運算可得,不一定有正數,使得,所以不成立,即可得答案.【詳解】充分性:若存在正數,使得,則,,得證;必要性:若,則,不一定有正數,使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數量積的運算,向量數乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.8.C【解析】
先根據組合數計算出所有的情況數,再根據“3個數中至少有2個陽數且能構成等差數列”列舉得到滿足條件的情況,由此可求解出對應的概率.【詳解】所有的情況數有:種,3個數中至少有2個陽數且能構成等差數列的情況有:,共種,所以目標事件的概率.故選:C.【點睛】本題考查概率與等差數列的綜合,涉及到背景文化知識,難度一般.求解該類問題可通過古典概型的概率求解方法進行分析;當情況數較多時,可考慮用排列數、組合數去計算.9.D【解析】
根據折線圖依次判斷每個選項得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關,故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【點睛】本題考查了折線圖,意在考查學生的理解能力.10.C【解析】
由題得,,又,聯立解方程組即可得,,進而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標準方程為.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,圓的方程的有關計算,考查了學生的計算能力.11.C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.12.C【解析】
求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.2020【解析】
可對左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【點睛】本題考查數列遞推式和累加法的應用,屬于基礎題14.【解析】
將代入求解即可;當為奇數時,,則轉化為,設,由單調性求得的最小值;同理,當為偶數時,,則轉化為,設,利用導函數求得的最小值,進而比較得到的最大值.【詳解】由題,,解得.當為奇數時,,由,得,而函數為單調遞增函數,所以,所以;當為偶數時,,由,得,設,,單調遞增,,所以,綜上可知,若不等式恒成立,則的最大值為.故答案為:(1);(2)【點睛】本題考查利用導函數求最值,考查分類討論思想和轉化思想.15.2【解析】
將已知數列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.16.7或【解析】
依據方差公式列出方程,解出即可.【詳解】,1,0,,的平均數為,所以解得或.【點睛】本題主要考查方差公式的應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)填表見解析;有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”(2)①詳見解析②期望;方差【解析】
(1)完成列聯表,代入數據即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據分析知,計算出期望與方差.【詳解】(1)分數不少于120分分數不足120分合計線上學習時間不少于5小時15419線上學習時間不足5小時101626合計252045有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”.(2)①由分層抽樣知,需要從不足120分的學生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設從全校不少于120分的學生中隨機抽取20人,這些人中每周線上學習時間不少于5小時的人數為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數學期望與方差的計算問題,屬于基礎題.18.解:設特征向量為α=對應的特征值為λ,則=λ,即因為k≠0,所以a=2.5分因為,所以A=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點:特征向量,逆矩陣點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,考查逆矩陣.19.(1)(2)【解析】
(1)判斷公比不為1,運用等比數列的求和公式,解方程可得公比,進而得到所求通項公式;(2)求得,運用數列的錯位相減法求和,以及等比數列的求和公式,計算可得所求和.【詳解】解:(1)設公比為正數的等比數列的前項和為,且,,可得時,,不成立;當時,,即,解得(舍去),則;(2),前項和,,兩式相減可得,化簡可得.【點睛】本題考查等比數列的通項公式和求和公式的運用,考查數列的錯位相減法求和,考查方程思想和運算能力,屬于中檔題.20.(1);(2).【解析】
(1)將代入函數的解析式,將函數的及解析式變形為分段函數,利用二次函數的基本性質可求得函數的值域;(2)由參變量分離法得出在區間內有解,分和討論,求得函數的最大值,即可得出實數的取值范圍.【詳解】(1)當時,.當時,;當時,.函數的值域為;(2)不等式等價于,即在區間內有解當時,,此時,,則;當時,,函數在區間上單調遞增,當時,,則.綜上,實數的取值范圍是.【點睛】本題主要考查含絕對值函數的值域與含絕對值不等式有解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大班幼兒在數學閱讀健康情感社交五大領域的發展策略
- 2024年中考押題預測卷02(天津卷)-歷史(考試版)A3
- 【高中語文】學校高三三模語文試題
- 2024-2025學年下學期高一生物滬科版期末必刷常考題之基因突變是生物變異的根本來源
- 點、直線和平面的投影
- 2024-2025學年浙江省杭州市部分重點中學高二下學期開學檢測語文試題(解析版)
- 2025年秋三年級上冊語文同步教案 口語交際:身邊的“小事”
- 學校德育工作心得體會
- 高一升高二(英語)
- 治療室換藥室消毒管理制度講課件
- 河南省鄭州市第八中學2025年七下英語期末經典試題含答案
- 2025年高考真題-化學(安徽卷) 含答案
- 2024年佛山市南海公證處招聘筆試真題
- 拱墅區長慶街道招聘工作人員考試真題2024
- 2025防洪防汛專項培訓
- 拆除與清運合同協議書
- 2025年中級會計實務考試解析方法試題及答案回顧
- 食品許可證初級考試試題及答案
- 2025《銀行專業實務(銀行管理)》初級銀行人員高分必會試題庫1000題-單選400題
- 咖啡師考試試題及答案
- 2025年人教版新教材數學一年級下冊期末復習計劃
評論
0/150
提交評論