2024-2025學年廣東省揭陽一中、潮州金中高三第二次“聯(lián)測促改”活動數(shù)學試題試卷含解析_第1頁
2024-2025學年廣東省揭陽一中、潮州金中高三第二次“聯(lián)測促改”活動數(shù)學試題試卷含解析_第2頁
2024-2025學年廣東省揭陽一中、潮州金中高三第二次“聯(lián)測促改”活動數(shù)學試題試卷含解析_第3頁
2024-2025學年廣東省揭陽一中、潮州金中高三第二次“聯(lián)測促改”活動數(shù)學試題試卷含解析_第4頁
2024-2025學年廣東省揭陽一中、潮州金中高三第二次“聯(lián)測促改”活動數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年廣東省揭陽一中、潮州金中高三第二次“聯(lián)測促改”活動數(shù)學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.2.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學趣味.著名數(shù)學家傅立葉研究了樂聲的本質,他證明了所有的樂聲都能用數(shù)學表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構成樂音的是()A. B. C. D.3.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.4.函數(shù)的圖象大致為A. B. C. D.5.在直角中,,,,若,則()A. B. C. D.6.設,則(

)A.10 B.11 C.12 D.137.已知函數(shù),,的零點分別為,,,則()A. B.C. D.8.在平面直角坐標系xOy中,已知橢圓的右焦點為,若F到直線的距離為,則E的離心率為()A. B. C. D.9.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.已知,則“直線與直線垂直”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.某歌手大賽進行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內(nèi)外的觀眾可以通過網(wǎng)絡平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內(nèi)外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內(nèi)外的觀眾評分的平均數(shù)為,所有嘉賓與場內(nèi)外的觀眾評分的平均數(shù)為,則下列選項正確的是()A. B. C. D.12.已知函數(shù),若,使得,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在處的切線斜率為________.14.如圖所示,在邊長為4的正方形紙片中,與相交于.剪去,將剩余部分沿,折疊,使、重合,則以、、、為頂點的四面體的外接球的體積為________.15.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.16.記復數(shù)z=a+bi(i為虛數(shù)單位)的共軛復數(shù)為,已知z=2+i,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設方程的實根為.令若存在,,,使得,證明:.18.(12分)某藝術品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉180°而成,如圖2.已知圓的半徑為,設,圓錐的側面積為.(1)求關于的函數(shù)關系式;(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求取得最大值時腰的長度.19.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現(xiàn)沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.20.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統(tǒng)計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預計年的銷售量.21.(12分)在最新公布的湖南新高考方案中,“”模式要求學生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設置具體的選修科目要求.雙超中學高一年級有學生1200人,現(xiàn)從中隨機抽取40人進行選科情況調查,用數(shù)字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現(xiàn)有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數(shù)是否需要調整?如果需要調整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學高一新生中隨機抽取3人,設具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.22.(10分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實數(shù)的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

設,,去絕對值,根據(jù)余弦函數(shù)的性質即可求出.【詳解】因為實數(shù),滿足,設,,,恒成立,,故則的最小值等于.故選:.本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質,考查了運算能力和轉化能力,意在考查學生對這些知識的理解掌握水平.2.C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C本題考查三角函數(shù)的周期與頻率,考查理解分析能力.3.D【解析】

易知單調遞增,由可得唯一零點,通過已知可求得,則問題轉化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調遞增且有惟一的零點為,所以,∴,問題轉化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構造函數(shù)法的應用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.4.D【解析】

由題可得函數(shù)的定義域為,因為,所以函數(shù)為奇函數(shù),排除選項B;又,,所以排除選項A、C,故選D.5.C【解析】

在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數(shù)量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,

,

若,則故選C.本題考查向量的加減運算和數(shù)量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.6.B【解析】

根據(jù)題中給出的分段函數(shù),只要將問題轉化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎題.7.C【解析】

轉化函數(shù),,的零點為與,,的交點,數(shù)形結合,即得解.【詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C本題考查了數(shù)形結合法研究函數(shù)的零點,考查了學生轉化劃歸,數(shù)形結合的能力,屬于中檔題.8.A【解析】

由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.本題考查橢圓離心率的問題,一般求橢圓離心率的問題時,通常是構造關于的方程或不等式,本題是一道容易題.9.C【解析】

根據(jù)線面平行的性質定理和判定定理判斷與的關系即可得到答案.【詳解】若,根據(jù)線面平行的性質定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.本題主要考查了線面平行的性質定理和判定定理,屬于基礎題.10.B【解析】

由兩直線垂直求得則或,再根據(jù)充要條件的判定方法,即可求解.【詳解】由題意,“直線與直線垂直”則,解得或,所以“直線與直線垂直”是“”的必要不充分條件,故選B.本題主要考查了兩直線的位置關系,及必要不充分條件的判定,其中解答中利用兩直線的位置關系求得的值,同時熟記充要條件的判定方法是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.11.C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計算,考查計算能力,屬于基礎題.12.C【解析】試題分析:由題意知,當時,由,當且僅當時,即等號是成立,所以函數(shù)的最小值為,當時,為單調遞增函數(shù),所以,又因為,使得,即在的最小值不小于在上的最小值,即,解得,故選C.考點:函數(shù)的綜合問題.【方法點晴】本題主要考查了函數(shù)的綜合問題,其中解答中涉及到基本不等式求最值、函數(shù)的單調性及其應用、全稱命題與存在命題的應用等知識點的綜合考查,試題思維量大,屬于中檔試題,著重考查了學生分析問題和解答問題的能力,以及轉化與化歸思想的應用,其中解答中轉化為在的最小值不小于在上的最小值是解答的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

求導后代入可構造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.本題考查切線斜率的求解問題,考查導數(shù)的幾何意義,屬于基礎題.14.【解析】

將三棱錐置入正方體中,利用正方體體對角線為三棱錐外接球的直徑即可得到答案.【詳解】由已知,將三棱錐置入正方體中,如圖所示,,故正方體體對角線長為,所以外接球半徑為,其體積為.故答案為:.本題考查三棱錐外接球的體積問題,一般在處理特殊幾何體的外接球問題時,要考慮是否能將其置入正(長)方體中,是一道中檔題.15.【解析】

設,由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導數(shù)法求的范圍.【詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:本題主要考查橢圓,雙曲線的定義和幾何性質,還考查了運算求解的能力,屬于中檔題.16.3﹣4i【解析】

計算得到z2=(2+i)2=3+4i,再計算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.本題考查了復數(shù)的運算,共軛復數(shù),意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析(3)證明見解析【解析】

(1)由題意可得,,令,利用導數(shù)得在上單調遞減,進而可得結論;(2)不等式轉化為,令,,利用導數(shù)得單調性即可得到答案;(3)由題意可得,進而可將不等式轉化為,再利用單調性可得,記,,再利用導數(shù)研究單調性可得在上單調遞增,即,即,即可得到結論.【詳解】(1),即,化簡可得.令,,因為,所以,.所以,在上單調遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設,則.在上,,所以在上單調遞減.在上,,所以在上單調遞增,所以.設,因為在上是減函數(shù),所以.所以,即.(3)證明:方程在區(qū)間上的實根為,即,要證,由可知,即要證.當時,,,因而在上單調遞增.當時,,,因而在上單調遞減.因為,所以,要證.即要證.記,.因為,所以,則..設,,當時,.時,,故.且,故,因為,所以.因此,即在上單調遞增.所以,即.故得證.本題考查函數(shù)的單調性、最值、函數(shù)恒成立問題,考查導數(shù)的應用,轉化思想,構造函數(shù)研究單調性,屬于難題.18.(1),(2)側面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導分析,得在時取得極大值,也是最大值.試題解析:(1)設交于點,過作,垂足為,在中,,,在中,,所以S,(2)要使側面積最大,由(1)得:令,所以得,由得:當時,,當時,所以在區(qū)間上單調遞增,在區(qū)間上單調遞減,所以在時取得極大值,也是最大值;所以當時,側面積取得最大值,此時等腰三角形的腰長答:側面積取得最大值時,等腰三角形的腰的長度為.19.(1)平行,證明見解析;(2).【解析】

(1)由題意及圖形的翻折規(guī)律可知應是的一條中位線,利用線面平行的判定定理即可求證;(2)利用條件及線面垂直的判定定理可知,,則平面,在利用錐體的體積公式即可.【詳解】(1)證明:因翻折后、、重合,∴應是的一條中位線,∴,∵平面,平面,∴平面;(2)解:∵,,∴面且,,,又,.本題主要考查線面平行的判定定理,線面垂直的判定定理及錐體的體積公式,屬于基礎題.20.(1),中位數(shù)為;(2)新能源汽車平均每個季度的銷售量為萬臺,以此預計年的銷售量約為萬臺.【解析】

(1)根據(jù)頻率分布直方圖中所有矩形面積之和為可計算出的值,利用中位數(shù)左邊的矩形面積之和為可求得銷量的中位數(shù)的值;(2)利用每個矩形底邊的中點值乘以相應矩形的面積,相加可得出銷量的平均數(shù),由此可預計年的銷售量.【詳解】(1)由于頻率分布直方圖的所有矩形面積之和為,則,解得,由于,因此,銷量的中位數(shù)為;(2)由頻率分布直方圖可知,新能源汽車平均每個季度的銷售量為(萬臺),由此預測年的銷售量為萬臺.本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)以及平均數(shù)的計算,考查計算能力,屬于基礎題.21.(1)不需調整(2)列聯(lián)表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(3)詳見解析【解析】

(1)可估計高一年級選修相應科目的人數(shù)分別為120,2,推理得對應開設選修班的數(shù)目分別為15,1.推理知生物科目需要減少4名教師,化學科目不需要調整.(2)根據(jù)列聯(lián)表計算觀測值,根據(jù)臨界值表可得結論.(3)經(jīng)統(tǒng)計,樣本中選修了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論