




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,將函數的圖象向左平移個單位長度后,所得到的圖象關于軸對稱,則的最小值是()A. B. C. D.2.等比數列中,,則與的等比中項是()A.±4 B.4 C. D.3.根據黨中央關于“精準”脫貧的要求,我市某農業經濟部門派四位專家對三個縣區進行調研,每個縣區至少派一位專家,則甲,乙兩位專家派遣至同一縣區的概率為()A. B. C. D.4.已知在平面直角坐標系中,圓:與圓:交于,兩點,若,則實數的值為()A.1 B.2 C.-1 D.-25.已知復數滿足(其中為的共軛復數),則的值為()A.1 B.2 C. D.6.我國古代數學名著《九章算術》有一問題:“今有鱉臑(biēnaò),下廣五尺,無袤;上袤四尺,無廣;高七尺.問積幾何?”該幾何體的三視圖如圖所示,則此幾何體外接球的表面積為()A.平方尺 B.平方尺C.平方尺 D.平方尺7.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構成,則該幾何體的體積為()A. B. C. D.8.已知復數滿足(是虛數單位),則=()A. B. C. D.9.若復數滿足,則()A. B. C. D.10.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.11.下列函數中,在定義域上單調遞增,且值域為的是()A. B. C. D.12.在中,角,,的對邊分別為,,,若,,,則()A. B.3 C. D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,滿足,,且已知向量,的夾角為,,則的最小值是__.14.將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落.小球在下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.己知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是,則小球落入袋中的概率為__________.15.已知矩形ABCD,AB=4,BC=3,以A,B為焦點,且過C,D兩點的雙曲線的離心率為____________.16.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,其中為自然對數的底數,.(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數有無極值點?若有,請求出極值點的個數;若沒有,請說明理由.18.(12分)年,山東省高考將全面實行“選”的模式(即:語文、數學、外語為必考科目,剩下的物理、化學、歷史、地理、生物、政治六科任選三科進行考試).為了了解學生對物理學科的喜好程度,某高中從高一年級學生中隨機抽取人做調查.統計顯示,男生喜歡物理的有人,不喜歡物理的有人;女生喜歡物理的有人,不喜歡物理的有人.(1)據此資料判斷是否有的把握認為“喜歡物理與性別有關”;(2)為了了解學生對選科的認識,年級決定召開學生座談會.現從名男同學和名女同學(其中男女喜歡物理)中,選取名男同學和名女同學參加座談會,記參加座談會的人中喜歡物理的人數為,求的分布列及期望.,其中.19.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.20.(12分)已知數列和,前項和為,且,是各項均為正數的等比數列,且,.(1)求數列和的通項公式;(2)求數列的前項和.21.(12分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.22.(10分)某超市在節日期間進行有獎促銷,規定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機會.摸獎規則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續摸球.按規定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數額,求隨機變量X的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
化簡為,求出它的圖象向左平移個單位長度后的圖象的函數表達式,利用所得到的圖象關于軸對稱列方程即可求得,問題得解。【詳解】函數可化為:,將函數的圖象向左平移個單位長度后,得到函數的圖象,又所得到的圖象關于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數圖象的平移、性質等知識,考查轉化能力,屬于中檔題。2.A【解析】
利用等比數列的性質可得,即可得出.【詳解】設與的等比中項是.
由等比數列的性質可得,.
∴與的等比中項
故選A.【點睛】本題考查了等比中項的求法,屬于基礎題.3.A【解析】
每個縣區至少派一位專家,基本事件總數,甲,乙兩位專家派遣至同一縣區包含的基本事件個數,由此能求出甲,乙兩位專家派遣至同一縣區的概率.【詳解】派四位專家對三個縣區進行調研,每個縣區至少派一位專家基本事件總數:甲,乙兩位專家派遣至同一縣區包含的基本事件個數:甲,乙兩位專家派遣至同一縣區的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.4.D【解析】
由可得,O在AB的中垂線上,結合圓的性質可知O在兩個圓心的連線上,從而可求.【詳解】因為,所以O在AB的中垂線上,即O在兩個圓心的連線上,,,三點共線,所以,得,故選D.【點睛】本題主要考查圓的性質應用,幾何性質的轉化是求解的捷徑.5.D【解析】
按照復數的運算法則先求出,再寫出,進而求出.【詳解】,,.故選:D【點睛】本題考查復數的四則運算、共軛復數及復數的模,考查基本運算能力,屬于基礎題.6.A【解析】
根據三視圖得出原幾何體的立體圖是一個三棱錐,將三棱錐補充成一個長方體,此長方體的外接球就是該三棱錐的外接球,由球的表面積公式計算可得選項.【詳解】由三視圖可得,該幾何體是一個如圖所示的三棱錐,為三棱錐外接球的球心,此三棱錐的外接球也是此三棱錐所在的長方體的外接球,所以為的中點,設球半徑為,則,所以外接球的表面積,故選:A.【點睛】本題考查求幾何體的外接球的表面積,關鍵在于由幾何體的三視圖得出幾何體的立體圖,找出外接球的球心位置和半徑,屬于中檔題.7.A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應深刻理解三視圖之間的關系,遵循“長對正,高平齊,寬相等”的基本原則,其內涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.8.A【解析】
把已知等式變形,再由復數代數形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復數代數形式的乘除運算,考查復數的基本概念,是基礎題.9.B【解析】
由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復數的四則運算,考查運算求解能力,屬于基礎題.10.D【解析】
先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.11.B【解析】
分別作出各個選項中的函數的圖象,根據圖象觀察可得結果.【詳解】對于,圖象如下圖所示:則函數在定義域上不單調,錯誤;對于,的圖象如下圖所示:則在定義域上單調遞增,且值域為,正確;對于,的圖象如下圖所示:則函數單調遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數在定義域上不單調,錯誤.故選:.【點睛】本題考查函數單調性和值域的判斷問題,屬于基礎題.12.B【解析】由正弦定理及條件可得,即.,∴,由余弦定理得。∴.選B。二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求的最小值可以轉化為求以AB為直徑的圓到點O的最小距離,由此即可得到本題答案.【詳解】如圖所示,設,由題,得,又,所以,則點C在以AB為直徑的圓上,取AB的中點為M,則,設以AB為直徑的圓與線段OM的交點為E,則的最小值是,因為,又,所以的最小值是.故答案為:【點睛】本題主要考查向量的綜合應用問題,涉及到圓的相關知識與余弦定理,考查學生的分析問題和解決問題的能力,體現了數形結合的數學思想.14.【解析】記小球落入袋中的概率,則,又小球每次遇到黑色障礙物時一直向左或者一直向右下落,小球將落入袋,所以有,則.故本題應填.15.2【解析】
根據為焦點,得;又求得,從而得到離心率.【詳解】為焦點在雙曲線上,則又本題正確結果:【點睛】本題考查利用雙曲線的定義求解雙曲線的離心率問題,屬于基礎題.16.【解析】
基本事件總數,三人都收到禮物包含的基本事件個數.由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數,三人都收到禮物包含的基本事件個數.則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)沒有,理由見解析【解析】
(1)求導,研究函數在x=0處的導數,等于切線斜率,即得解;(2)對f(x)求導,構造,可證得,得到,即得解【詳解】(1)由題意得,∵曲線在點處的切線與直線平行,∴切線的斜率為,解得.(2)當時,,,設,則,則函數在區間上單調遞減,在區間上單調遞增,又函數,故恒成立,∴函數在定義域內單調遞增,函數不存在極值點.【點睛】本題考查了導數在切線問題和函數極值問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.18.(1)有的把握認為喜歡物理與性別有關;(2)分布列見解析,.【解析】
(1)根據題目所給信息,列出列聯表,計算的觀測值,對照臨界值表可得出結論;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,確定的所有取值為、、、、.根據計數原理計算出每個所對應的概率,列出分布列計算期望即可.【詳解】(1)根據所給條件得列聯表如下:男女合計喜歡物理不喜歡物理合計,所以有的把握認為喜歡物理與性別有關;(2)設參加座談會的人中喜歡物理的男同學有人,女同學有人,則,由題意可知,的所有可能取值為、、、、.,,,,.所以的分布列為:所以.【點睛】本題考查了獨立性檢驗、離散型隨機變量的概率分布列.離散型隨機變量的期望.屬于中等題.19.(1)見解析;(2)【解析】
(1)根據面面垂直性質及線面垂直性質,可證明;由所給線段關系,結合勾股定理逆定理,可證明,進而由線面垂直的判定定理證明平面.(2)建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,由空間向量法求得兩個平面夾角的余弦值,結合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標系,則,,,,,,.設平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質應用,空間向量法求二面角的大小,屬于中檔題.20.(1),;(2).【解析】
(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達式,即可得出數列的通項公式,并設數列的公比為,根據題意列出和的方程組,解出這兩個量,然后利用等比數列的通項公式可求出;(2)求出數列的前項和,然后利用分組求和法可求出.【詳解】(1)當時,,當時,.也適合上式,所以,.設數列的公比為,則,由,兩式相除得,,解得,,;(2)設數列的前項和為,則,.【點睛】本題考查利用求,同時也考查了等比數列通項的計算,以及分組求和法的應用,考查計算能力,屬于中等題.21.(Ⅰ);(Ⅱ)【解析】
(Ⅰ)利用三角形面積公式以及并結合正弦定理,可得結果.(Ⅱ)根據,可得,然后使用余弦定理,可得結果.【詳解】(Ⅰ),所以所以;(Ⅱ),所以,所以,,所以,所以邊.【點睛】本題考查三角形面積公式,正弦定理以及余弦定理的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國可折疊刀行業市場全景分析及前景機遇研判報告
- 國際郵輪乘務管理專業教學標準(高等職業教育專科)2025修訂
- 2025年中國高端紅酒市場發展現狀調查及投資趨勢前景分析報告
- 2024年中國鉆井液助劑行業市場調查報告
- 中國音樂貼花行業市場發展前景及發展趨勢與投資戰略研究報告(2024-2030)
- 信貸技能培訓課件
- 2025年 重慶公務員考試行測試題市直附答案
- 2025年中國大型客車行業市場調研分析及投資前景預測報告
- 2025年 南通市第三人民醫院招聘考試筆試試題附答案
- 2025年 河南省全科醫生特設崗位計劃招聘筆試試題附答案
- 大學生戀愛與性健康(中國性學會) 超星爾雅學習通章節測試答案
- 中醫醫院中醫護理工作指南2024
- 綠植租賃維護擺放服務實施方案
- 光伏運維技能大賽備考試題含答案
- 高考英語讀后續寫練習03:女兒離家又回家+講義
- 2024鐵塔采購合同模板
- 鹵菜店供貨合同協議書
- 華為云:2024年EMS彈性內存存儲技術白皮書
- 卡粘式連接薄壁不銹鋼管道工程技術規程
- 2024年山東普通高中學業水平等級考試化學(原卷版)
- 接警員試題題庫
評論
0/150
提交評論