




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若樣本的平均數是10,方差為2,則對于樣本,下列結論正確的是()A.平均數為20,方差為4 B.平均數為11,方差為4C.平均數為21,方差為8 D.平均數為20,方差為82.給出以下四個命題:①依次首尾相接的四條線段必共面;②過不在同一條直線上的三點,有且只有一個平面;③空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角必相等;④垂直于同一直線的兩條直線必平行.其中正確命題的個數是()A.0 B.1 C.2 D.33.將函數圖象上每一點的橫坐標變為原來的2倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.4.已知實數x,y滿足,則的最小值等于()A. B. C. D.5.設且,則下列不等式成立的是()A. B. C. D.6.已知函數(),若函數在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或07.若復數是純虛數,則()A.3 B.5 C. D.8.復數的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知向量滿足,且與的夾角為,則()A. B. C. D.10.己知全集為實數集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)11.已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當變化時,的最大值為()A. B. C. D.112.已知集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角所對的邊分別是,若,,則__________.14.若的展開式中只有第六項的二項式系數最大,則展開式中各項的系數和是________.15.在的二項展開式中,x的系數為________.(用數值作答)16.己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.18.(12分)已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)寫出曲線的極坐標方程;(2)點是曲線上的一點,試判斷點與曲線的位置關系.19.(12分)如圖1,與是處在同-個平面內的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.20.(12分)已知的面積為,且.(1)求角的大小及長的最小值;(2)設為的中點,且,的平分線交于點,求線段的長.21.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點,平面,,為線段上一點(不與端點重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實數滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.22.(10分)健身館某項目收費標準為每次60元,現推出會員優惠活動:具體收費標準如下:現隨機抽取了100為會員統計它們的消費次數,得到數據如下:假設該項目的成本為每次30元,根據給出的數據回答下列問題:(1)估計1位會員至少消費兩次的概率(2)某會員消費4次,求這4次消費獲得的平均利潤;(3)假設每個會員每星期最多消費4次,以事件發生的頻率作為相應事件的概率,從會員中隨機抽取兩位,記從這兩位會員的消費獲得的平均利潤之差的絕對值為,求的分布列及數學期望
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由兩組數據間的關系,可判斷二者平均數的關系,方差的關系,進而可得到答案.【詳解】樣本的平均數是10,方差為2,所以樣本的平均數為,方差為.故選:D.【點睛】樣本的平均數是,方差為,則的平均數為,方差為.2.B【解析】
用空間四邊形對①進行判斷;根據公理2對②進行判斷;根據空間角的定義對③進行判斷;根據空間直線位置關系對④進行判斷.【詳解】①中,空間四邊形的四條線段不共面,故①錯誤.②中,由公理2知道,過不在同一條直線上的三點,有且只有一個平面,故②正確.③中,由空間角的定義知道,空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補,故③錯誤.④中,空間中,垂直于同一直線的兩條直線可相交,可平行,可異面,故④錯誤.故選:B【點睛】本小題考查空間點,線,面的位置關系及其相關公理,定理及其推論的理解和認識;考查空間想象能力,推理論證能力,考查數形結合思想,化歸與轉化思想.3.D【解析】
根據函數圖象的變換規律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變為原來的2倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D【點睛】考查三角函數圖象的變換規律以及其有關性質,基礎題.4.D【解析】
設,,去絕對值,根據余弦函數的性質即可求出.【詳解】因為實數,滿足,設,,,恒成立,,故則的最小值等于.故選:.【點睛】本題考查了橢圓的參數方程、三角函數的圖象和性質,考查了運算能力和轉化能力,意在考查學生對這些知識的理解掌握水平.5.A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.6.C【解析】
求出函數的導函數,當時,只需,即,令,利用導數求其單調區間,即可求出參數的值,當時,根據函數的單調性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數在上單調遞增.∵,∴;當時,,函數在上單調遞減,∵,,函數在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導數研究函數的零點問題,零點存在性定理的應用,屬于中檔題.7.C【解析】
先由已知,求出,進一步可得,再利用復數模的運算即可【詳解】由z是純虛數,得且,所以,.因此,.故選:C.【點睛】本題考查復數的除法、復數模的運算,考查學生的運算能力,是一道基礎題.8.C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.9.A【解析】
根據向量的運算法則展開后利用數量積的性質即可.【詳解】.故選:A.【點睛】本題主要考查數量積的運算,屬于基礎題.10.D【解析】
求解一元二次不等式化簡A,求解對數不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數不等式,二次不等式的求法,是基礎題.11.B【解析】
根據題意,建立平面直角坐標系.令.為中點.由即可求得點的軌跡方程.將變形,結合及平面向量基本定理可知三點共線.由圓切線的性質可知的最小值即為到直線的距離最小值,且當與圓相切時,有最大值.利用圓的切線性質及點到直線距離公式即可求得直線方程,進而求得原點到直線的距離,即為的最大值.【詳解】根據題意,設,則由代入可得即點的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點共線,如下圖所示:所以的最小值即為到直線的距離最小值根據圓的切線性質可知,當與圓相切時,有最大值設切線的方程為,化簡可得由切線性質及點到直線距離公式可得,化簡可得即所以切線方程為或所以當變化時,到直線的最大值為即的最大值為故選:B【點睛】本題考查了平面向量的坐標應用,平面向量基本定理的應用,圓的軌跡方程問題,圓的切線性質及點到直線距離公式的應用,綜合性強,屬于難題.12.C【解析】
求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【詳解】由于,所以,所以.由正弦定理得.故答案為:【點睛】本小題主要考查正弦定理解三角形,考查同角三角函數的基本關系式,考查兩角和的正弦公式,考查三角形的內角和定理,屬于中檔題.14.【解析】
由題意得出展開式中共有11項,;再令求得展開式中各項的系數和.【詳解】由的展開式中只有第六項的二項式系數最大,所以展開式中共有11項,所以;令,可求得展開式中各項的系數和是:.故答案為:1.【點睛】本小題主要考查二項式展開式的通項公式的運用,考查二項式展開式各項系數和的求法,屬于基礎題.15.-40【解析】
由題意,可先由公式得出二項展開式的通項,再令10-3r=1,得r=3即可得出x項的系數【詳解】的二項展開式的通項公式為,r=0,1,2,3,4,5,令,所以的二項展開式中x項的系數為.故答案為:-40.【點睛】本題考查二項式定理的應用,解題關鍵是靈活掌握二項式展開式通項的公式,屬于基礎題.16.【解析】
由,則,所以點,因為,可得,點坐標化簡為,代入雙曲線的方程求解.【詳解】設,則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關系,及三角恒等變換,還考查了運算求解的能力和數形結合的思想,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(I)證明見解析;(II)1【解析】
(I)過D作DE⊥BC于E,連接SE,根據勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點睛】本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.18.(1)(2)點在曲線外.【解析】
(1)先消參化曲線的參數方程為普通方程,再化為極坐標方程;(2)由點是曲線上的一點,利用的范圍判斷的范圍,即可判斷位置關系.【詳解】(1)由曲線的參數方程為可得曲線的普通方程為,則曲線的極坐標方程為,即(2)由題,點是曲線上的一點,因為,所以,即,所以點在曲線外.【點睛】本題考查參數方程與普通方程的轉化,考查直角坐標方程與極坐標方程的轉化,考查點與圓的位置關系.19.(1)證明見解析(2)(3)【解析】
根據折疊圖形,,由線面垂直的判定定理可得平面,再根據平面,得到.(2)根據,以為坐標原點,為軸建立空間直角坐標系,根據,可知,,表示相應點的坐標,分別求得平面與平面的法向量,代入求解.設所求幾何體的體積為,設為高,則,表示梯形BEFD和ABD的面積由,再利用導數求最值.【詳解】(1)證明:不妨設與的交點為與的交點為由題知,,則有又,則有由折疊可知所以可證由平面平面,則有平面又因為平面,所以....(2)解:依題意,有平面平面,又平面,則有平面,,又由題意知,如圖所示:以為坐標原點,為軸建立如圖所示的空間直角坐標系由題意知由可知,則則有,,設平面與平面的法向量分別為則有則所以因為,解得設所求幾何體的體積為,設,則,當時,,當時,在是增函數,在上是減函數當時,有最大值,即六面體的體積的最大值是【點睛】本題主要考查線線垂直,線面垂直,面面垂直的轉化,二面角的向量求法和空間幾何體的體積,還考查了轉化化歸的思想和運算求解的能力,屬于難題.20.(1),;(2).【解析】
(1)根據面積公式和數量積性質求角及最大邊;(2)根據的長度求出,再根據面積比值求,從而求出.【詳解】(1)在中,由,得,由,得,所以,所以,,因為在中,,所以,因為(當且僅當時取等),所以長的最小值為;(2)在三角形中,因為為中線,所以,,所以,因為,所以,所以,由(1)知,所以,或,,所以,因為為角平分線,,,或2,所以,或,所以.【點睛】本題考查了平面向量數量積的性質及其運算,余弦定理解三角形及三角形面積公式的應用,屬于中檔題.21.(1)(?。┳C明見解析(ⅱ)(2)存在,【解析】
(1)(i)連接交于點,連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導出,以為原點建立空間直角坐標系,利用向量法求解;(2)設,求出平面的法向量,利用向量法求解.【詳解】(1)(ⅰ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工安培訓課件
- 2025年石嘴山危運資格證模擬試題
- 2025年鶴崗機動車駕駛教練員從業資格考試題庫
- 2025年重慶出租車駕駛證考試
- 教授培訓課件
- 驗收培訓課件
- 鍛造 培訓 課件
- 戀愛培訓課件
- 攝影美食培訓課件
- 滅蚊蠅工作計劃
- 綠植租賃維護擺放服務實施方案
- 光伏運維技能大賽備考試題含答案
- 高考英語讀后續寫練習03:女兒離家又回家+講義
- 2024鐵塔采購合同模板
- 鹵菜店供貨合同協議書
- 華為云:2024年EMS彈性內存存儲技術白皮書
- 卡粘式連接薄壁不銹鋼管道工程技術規程
- 2024年山東普通高中學業水平等級考試化學(原卷版)
- 接警員試題題庫
- 湖南省岳陽市2024年八年級下學期期末物理試卷附答案
- DZ∕T 0284-2015 地質災害排查規范(正式版)
評論
0/150
提交評論