新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第13講 函數(shù)的應(yīng)用和函數(shù)模型(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第13講 函數(shù)的應(yīng)用和函數(shù)模型(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第13講 函數(shù)的應(yīng)用和函數(shù)模型(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第13講 函數(shù)的應(yīng)用和函數(shù)模型(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講義 第13講 函數(shù)的應(yīng)用和函數(shù)模型(含解析)_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

【一輪復(fù)習(xí)講義】2024年高考數(shù)學(xué)高頻考點題型歸納與方法總結(jié)(新高考通用)第13講函數(shù)的應(yīng)用和函數(shù)模型(精講)題型目錄一覽①求函數(shù)的零點和判斷零點所在區(qū)間②與零點有關(guān)的參數(shù)問題③二分法的應(yīng)用④常見函數(shù)模型Ⅰ-二次和分段函數(shù)⑤常見函數(shù)模型Ⅱ-指對冪函數(shù)【★文末附錄-函數(shù)的應(yīng)用思維導(dǎo)圖】一、知識點梳理一、知識點梳理1.函數(shù)的零點對于函數(shù)SKIPIF1<0,我們把使SKIPIF1<0的實數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的零點.2.方程的根與函數(shù)零點的關(guān)系方程SKIPIF1<0有實數(shù)根SKIPIF1<0函數(shù)SKIPIF1<0的圖像與SKIPIF1<0軸有公共點SKIPIF1<0函數(shù)SKIPIF1<0有零點.3.零點存在性定理如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖像是連續(xù)不斷的一條曲線,并且有SKIPIF1<0,那么函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有零點,即存在SKIPIF1<0,使得SKIPIF1<0也就是方程SKIPIF1<0的根.4.二分法對于區(qū)間SKIPIF1<0上連續(xù)不斷且SKIPIF1<0的函數(shù)SKIPIF1<0,通過不斷地把函數(shù)SKIPIF1<0的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點的近似值的方法叫做二分法.求方程SKIPIF1<0的近似解就是求函數(shù)SKIPIF1<0零點的近似值.5.用二分法求函數(shù)SKIPIF1<0零點近似值的步驟(1)確定區(qū)間SKIPIF1<0,驗證SKIPIF1<0,給定精度SKIPIF1<0.(2)求區(qū)間SKIPIF1<0的中點SKIPIF1<0.(3)計算SKIPIF1<0.若SKIPIF1<0則SKIPIF1<0就是函數(shù)SKIPIF1<0的零點;若SKIPIF1<0,則令SKIPIF1<0(此時零點SKIPIF1<0).若SKIPIF1<0,則令SKIPIF1<0(此時零點SKIPIF1<0)(4)判斷是否達(dá)到精確度SKIPIF1<0,即若SKIPIF1<0,則函數(shù)零點的近似值為SKIPIF1<0(或SKIPIF1<0);否則重復(fù)第(2)~(4)步.(用二分法求方程近似解的計算量較大,因此往往借助計算完成.)6.幾種常見的函數(shù)模型:函數(shù)模型函數(shù)解析式一次函數(shù)模型SKIPIF1<0,SKIPIF1<0為常數(shù)且SKIPIF1<0反比例函數(shù)模型SKIPIF1<0,SKIPIF1<0為常數(shù)且SKIPIF1<0二次函數(shù)模型SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為常數(shù)且SKIPIF1<0指數(shù)函數(shù)模型SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為常數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0對數(shù)函數(shù)模型SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為常數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0冪函數(shù)模型SKIPIF1<0,SKIPIF1<0為常數(shù),SKIPIF1<07.解函數(shù)應(yīng)用問題的步驟:(1)審題:弄清題意,識別條件與結(jié)論,弄清數(shù)量關(guān)系,初步選擇數(shù)學(xué)模型;(2)建模:將自然語言轉(zhuǎn)化為數(shù)學(xué)語言,將文字語言轉(zhuǎn)化為符號語言,利用已有知識建立相應(yīng)的數(shù)學(xué)模型;(3)解模:求解數(shù)學(xué)模型,得出結(jié)論;(4)還原:將數(shù)學(xué)問題還原為實際問題.【常用結(jié)論】函數(shù)的零點相關(guān)技巧:①若連續(xù)不斷的函數(shù)SKIPIF1<0在定義域上是單調(diào)函數(shù),則SKIPIF1<0至多有一個零點.②連續(xù)不斷的函數(shù)SKIPIF1<0,其相鄰的兩個零點之間的所有函數(shù)值同號.③連續(xù)不斷的函數(shù)SKIPIF1<0通過零點時,函數(shù)值不一定變號.④連續(xù)不斷的函數(shù)SKIPIF1<0在閉區(qū)間SKIPIF1<0上有零點,不一定能推出SKIPIF1<0.二、題型分類精講二、題型分類精講刷真題明導(dǎo)向刷真題明導(dǎo)向一、單選題1.(2020·全國·統(tǒng)考高考真題)在新冠肺炎疫情防控期間,某超市開通網(wǎng)上銷售業(yè)務(wù),每天能完成1200份訂單的配貨,由于訂單量大幅增加,導(dǎo)致訂單積壓.為解決困難,許多志愿者踴躍報名參加配貨工作.已知該超市某日積壓500份訂單未配貨,預(yù)計第二天的新訂單超過1600份的概率為0.05,志愿者每人每天能完成50份訂單的配貨,為使第二天完成積壓訂單及當(dāng)日訂單的配貨的概率不小于0.95,則至少需要志愿者(

)A.10名 B.18名 C.24名 D.32名【答案】B【分析】算出第二天訂單數(shù),除以志愿者每天能完成的訂單配貨數(shù)即可.【詳解】由題意,第二天新增訂單數(shù)為SKIPIF1<0,SKIPIF1<0,故至少需要志愿者SKIPIF1<0名.故選:B【點晴】本題主要考查函數(shù)模型的簡單應(yīng)用,屬于基礎(chǔ)題.2.(2020·海南·統(tǒng)考高考真題)基本再生數(shù)R0與世代間隔T是新冠肺炎的流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:SKIPIF1<0描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學(xué)者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)(

)A.1.2天 B.1.8天C.2.5天 D.3.5天【答案】B【分析】根據(jù)題意可得SKIPIF1<0,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為SKIPIF1<0天,根據(jù)SKIPIF1<0,解得SKIPIF1<0即可得結(jié)果.【詳解】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為SKIPIF1<0天,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0天.故選:B.【點睛】本題考查了指數(shù)型函數(shù)模型的應(yīng)用,考查了指數(shù)式化對數(shù)式,屬于基礎(chǔ)題.3.(2020·天津·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0恰有4個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由SKIPIF1<0,結(jié)合已知,將問題轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0有SKIPIF1<0個不同交點,分SKIPIF1<0三種情況,數(shù)形結(jié)合討論即可得到答案.【詳解】注意到SKIPIF1<0,所以要使SKIPIF1<0恰有4個零點,只需方程SKIPIF1<0恰有3個實根即可,令SKIPIF1<0SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0的圖象有SKIPIF1<0個不同交點.因為SKIPIF1<0,當(dāng)SKIPIF1<0時,此時SKIPIF1<0,如圖1,SKIPIF1<0與SKIPIF1<0有SKIPIF1<0個不同交點,不滿足題意;當(dāng)SKIPIF1<0時,如圖2,此時SKIPIF1<0與SKIPIF1<0恒有SKIPIF1<0個不同交點,滿足題意;當(dāng)SKIPIF1<0時,如圖3,當(dāng)SKIPIF1<0與SKIPIF1<0相切時,聯(lián)立方程得SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),所以SKIPIF1<0.綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.4.(2021·天津·統(tǒng)考高考真題)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)恰有6個零點,則a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0最多有2個根,可得SKIPIF1<0至少有4個根,分別討論當(dāng)SKIPIF1<0和SKIPIF1<0時兩個函數(shù)零點個數(shù)情況,再結(jié)合考慮即可得出.【詳解】SKIPIF1<0最多有2個根,所以SKIPIF1<0至少有4個根,由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,(1)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0有4個零點,即SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0有5個零點,即SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0有6個零點,即SKIPIF1<0;(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0無零點;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0有1個零點;當(dāng)SKIPIF1<0時,令SKIPIF1<0,則SKIPIF1<0,此時SKIPIF1<0有2個零點;所以若SKIPIF1<0時,SKIPIF1<0有1個零點.綜上,要使SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)恰有6個零點,則應(yīng)滿足SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,則可解得a的取值范圍是SKIPIF1<0.【點睛】關(guān)鍵點睛:解決本題的關(guān)鍵是分成SKIPIF1<0和SKIPIF1<0兩種情況分別討論兩個函數(shù)的零點個數(shù)情況.二、填空題5.(2021·北京·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0,給出下列四個結(jié)論:①若SKIPIF1<0,SKIPIF1<0恰有2個零點;②存在負(fù)數(shù)SKIPIF1<0,使得SKIPIF1<0恰有1個零點;③存在負(fù)數(shù)SKIPIF1<0,使得SKIPIF1<0恰有3個零點;④存在正數(shù)SKIPIF1<0,使得SKIPIF1<0恰有3個零點.其中所有正確結(jié)論的序號是_______.【答案】①②④【分析】由SKIPIF1<0可得出SKIPIF1<0,考查直線SKIPIF1<0與曲線SKIPIF1<0的左、右支分別相切的情形,利用方程思想以及數(shù)形結(jié)合可判斷各選項的正誤.【詳解】對于①,當(dāng)SKIPIF1<0時,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,①正確;對于②,考查直線SKIPIF1<0與曲線SKIPIF1<0相切于點SKIPIF1<0,對函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,所以,存在SKIPIF1<0,使得SKIPIF1<0只有一個零點,②正確;對于③,當(dāng)直線SKIPIF1<0過點SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時,直線SKIPIF1<0與曲線SKIPIF1<0有兩個交點,若函數(shù)SKIPIF1<0有三個零點,則直線SKIPIF1<0與曲線SKIPIF1<0有兩個交點,直線SKIPIF1<0與曲線SKIPIF1<0有一個交點,所以,SKIPIF1<0,此不等式無解,因此,不存在SKIPIF1<0,使得函數(shù)SKIPIF1<0有三個零點,③錯誤;對于④,考查直線SKIPIF1<0與曲線SKIPIF1<0相切于點SKIPIF1<0,對函數(shù)SKIPIF1<0求導(dǎo)得SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,所以,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0有三個零點,④正確.故答案為:①②④.【點睛】思路點睛:已知函數(shù)的零點或方程的根的情況,求解參數(shù)的取值范圍問題的本質(zhì)都是研究函數(shù)的零點問題,求解此類問題的一般步驟:(1)轉(zhuǎn)化,即通過構(gòu)造函數(shù),把問題轉(zhuǎn)化成所構(gòu)造函數(shù)的零點問題;(2)列式,即根據(jù)函數(shù)的零點存在定理或結(jié)合函數(shù)的圖象列出關(guān)系式;(3)得解,即由列出的式子求出參數(shù)的取值范圍.6.(2022·天津·統(tǒng)考高考真題)設(shè)SKIPIF1<0,對任意實數(shù)x,記SKIPIF1<0.若SKIPIF1<0至少有3個零點,則實數(shù)SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,SKIPIF1<0,分析可知函數(shù)SKIPIF1<0至少有一個零點,可得出SKIPIF1<0,求出SKIPIF1<0的取值范圍,然后對實數(shù)SKIPIF1<0的取值范圍進行分類討論,根據(jù)題意可得出關(guān)于實數(shù)SKIPIF1<0的不等式,綜合可求得實數(shù)SKIPIF1<0的取值范圍.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0.要使得函數(shù)SKIPIF1<0至少有SKIPIF1<0個零點,則函數(shù)SKIPIF1<0至少有一個零點,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0,作出函數(shù)SKIPIF1<0、SKIPIF1<0的圖象如下圖所示:此時函數(shù)SKIPIF1<0只有兩個零點,不合乎題意;②當(dāng)SKIPIF1<0時,設(shè)函數(shù)SKIPIF1<0的兩個零點分別為SKIPIF1<0、SKIPIF1<0,要使得函數(shù)SKIPIF1<0至少有SKIPIF1<0個零點,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0;③當(dāng)SKIPIF1<0時,SKIPIF1<0,作出函數(shù)SKIPIF1<0、SKIPIF1<0的圖象如下圖所示:由圖可知,函數(shù)SKIPIF1<0的零點個數(shù)為SKIPIF1<0,合乎題意;④當(dāng)SKIPIF1<0時,設(shè)函數(shù)SKIPIF1<0的兩個零點分別為SKIPIF1<0、SKIPIF1<0,要使得函數(shù)SKIPIF1<0至少有SKIPIF1<0個零點,則SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,此時SKIPIF1<0.綜上所述,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.題型一求函數(shù)的零點和判斷零點所在區(qū)間策略方法1.確定函數(shù)零點個數(shù)的方法2.判斷函數(shù)零點所在區(qū)間的方法【典例1】已知函數(shù)SKIPIF1<0是奇函數(shù),且SKIPIF1<0,若SKIPIF1<0是函數(shù)SKIPIF1<0的一個零點,則SKIPIF1<0(

)A.SKIPIF1<0 B.0 C.2 D.4【答案】D【分析】根據(jù)給定條件,利用奇函數(shù)、函數(shù)零點的定義,列式求解作答.【詳解】因為SKIPIF1<0是函數(shù)SKIPIF1<0的一個零點,則SKIPIF1<0,于是SKIPIF1<0,即SKIPIF1<0,而函數(shù)SKIPIF1<0是奇函數(shù),則有SKIPIF1<0,所以SKIPIF1<0.故選:D【典例2】設(shè)方程SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的實數(shù)根分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用零點存在性定理分別求出根的范圍即可判斷.【詳解】構(gòu)建SKIPIF1<0,可知SKIPIF1<0在定義域內(nèi)單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0的實數(shù)根SKIPIF1<0,構(gòu)建SKIPIF1<0,可知SKIPIF1<0在定義域內(nèi)單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0的實數(shù)根SKIPIF1<0,構(gòu)建SKIPIF1<0,可知SKIPIF1<0在定義域內(nèi)單調(diào)遞增,且SKIPIF1<0,所以SKIPIF1<0的實數(shù)根SKIPIF1<0,SKIPIF1<0.故選:A.【點睛】本題考查了指數(shù)函數(shù)對數(shù)函數(shù)的性質(zhì)以及方程根的問題,屬于基礎(chǔ)題【題型訓(xùn)練】一、單選題1.(2023·全國·高三專題練習(xí))已知方程SKIPIF1<0的解在SKIPIF1<0內(nèi),則SKIPIF1<0(

)A.0 B.1 C.2 D.3【答案】B【分析】根據(jù)函數(shù)單調(diào)性結(jié)合零點存在性定理分析運算.【詳解】構(gòu)建SKIPIF1<0,則SKIPIF1<0在定義域內(nèi)單調(diào)遞增,故SKIPIF1<0在定義域內(nèi)至多有一個零點,∵SKIPIF1<0,∴SKIPIF1<0僅在SKIPIF1<0內(nèi)存在零點,即方程SKIPIF1<0的解僅在SKIPIF1<0內(nèi),故SKIPIF1<0.故選:B.2.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的零點依次為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分別討論SKIPIF1<0的零點所在的區(qū)間,然后比較大小.【詳解】對于SKIPIF1<0,顯然是增函數(shù),SKIPIF1<0,所以SKIPIF1<0的唯一零點SKIPIF1<0;對于SKIPIF1<0,顯然也是增函數(shù),SKIPIF1<0,所以SKIPIF1<0的唯一零點SKIPIF1<0;對于SKIPIF1<0,顯然也是增函數(shù),SKIPIF1<0,所以SKIPIF1<0的唯一零點SKIPIF1<0;SKIPIF1<0;故選:A.3.(2023·全國·高三專題練習(xí))用二分法求方程SKIPIF1<0近似解時,所取的第一個區(qū)間可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】SKIPIF1<0,判斷函數(shù)單調(diào)性,求出區(qū)間的端點的函數(shù)值,再根據(jù)零點的存在性定理即可得出答案.【詳解】令SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0上都是增函數(shù),所以函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),SKIPIF1<0,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有唯一零點,所以用二分法求方程SKIPIF1<0近似解時,所取的第一個區(qū)間可以是SKIPIF1<0.故選:B.二、填空題4.(2023春·河南周口·高三校考階段練習(xí))函數(shù)SKIPIF1<0的零點是_________.【答案】1和3【分析】直接利用對數(shù)函數(shù)的性質(zhì)與零點的定義,令SKIPIF1<0即可求解【詳解】依題意,令SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0,故答案為:1和3.5.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0則函數(shù)SKIPIF1<0的所有零點之和為___________.【答案】SKIPIF1<0【分析】利用分段函數(shù),分類討論,即可求出函數(shù)SKIPIF1<0的所有零點,從而得解.【詳解】解:SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0;SKIPIF1<0函數(shù)SKIPIF1<0的所有零點為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以所有零點的和為SKIPIF1<0故答案為:SKIPIF1<0.6.(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的零點個數(shù)為________.【答案】1【分析】解法一,將函數(shù)SKIPIF1<0的零點轉(zhuǎn)化為函數(shù)SKIPIF1<0與SKIPIF1<0圖象的交點問題,作出函數(shù)圖象,數(shù)形結(jié)合,可得答案;解法二,利用零點存在定理結(jié)合函數(shù)的單調(diào)性,可得答案.【詳解】解法一:令SKIPIF1<0,可得方程SKIPIF1<0,即SKIPIF1<0,故原函數(shù)的零點個數(shù)即為函數(shù)SKIPIF1<0與SKIPIF1<0圖象的交點個數(shù).在同一平面直角坐標(biāo)系中作出兩個函數(shù)的大致圖象(如圖).由圖可知,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象只有一個交點,故函數(shù)SKIPIF1<0只有一個零點,故答案為:1解法二:∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0的圖象在SKIPIF1<0上是不間斷的,∴SKIPIF1<0在SKIPIF1<0上必有零點,又SKIPIF1<0在SKIPIF1<0上是單調(diào)遞增的,∴函數(shù)SKIPIF1<0的零點有且只有一個,故答案為:17.(2023·全國·高三專題練習(xí))設(shè)SKIPIF1<0為實數(shù),函數(shù)SKIPIF1<0在SKIPIF1<0上有零點,則實數(shù)SKIPIF1<0的取值范圍為________.【答案】SKIPIF1<0【分析】由零點的存在性定理求解即可【詳解】因為SKIPIF1<0在SKIPIF1<0單調(diào)遞增,且有零點,所以SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0題型二與零點有關(guān)的參數(shù)問題策略方法已知函數(shù)有零點(方程有根),求參數(shù)的值或取值范圍【典例1】.若函數(shù)SKIPIF1<0SKIPIF1<0恰有2個零點,則實數(shù)a的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分類討論SKIPIF1<0或SKIPIF1<0三種情況,然后根據(jù)函數(shù)判斷【詳解】①當(dāng)SKIPIF1<0時,SKIPIF1<0則SKIPIF1<0只有一個零點0,不符合題意;②當(dāng)SKIPIF1<0時,作出函數(shù)SKIPIF1<0的大致圖象,如圖1,SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上各有一個零點,符合題意;③當(dāng)SKIPIF1<0時,作出函數(shù)SKIPIF1<0的大致圖象,如圖2,SKIPIF1<0在SKIPIF1<0上沒有零點.則SKIPIF1<0在SKIPIF1<0上有兩個零點,此時必須滿足SKIPIF1<0,解得SKIPIF1<0.綜上,得SKIPIF1<0或SKIPIF1<0.故選:A【題型訓(xùn)練】一、單選題1.(湖北省鄂東南省級示范高中教育教學(xué)改革聯(lián)盟學(xué)校2023屆高三下學(xué)期5月模擬聯(lián)考數(shù)學(xué)試題)設(shè)SKIPIF1<0表示m,n中的較小數(shù).若函數(shù)SKIPIF1<0至少有3個零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】分析可知函數(shù)SKIPIF1<0至少有一個零點,可得出SKIPIF1<0,求出SKIPIF1<0的取值范圍,然后對實數(shù)SKIPIF1<0的取值范圍進行分類討論,即可得出實數(shù)SKIPIF1<0的取值范圍.【詳解】由題意可得SKIPIF1<0有解,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時,必有SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時,必有SKIPIF1<0,不等式組無解,綜上所述,SKIPIF1<0,∴SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A2.(2023·全國·高三專題練習(xí))若方程SKIPIF1<0,且SKIPIF1<0有兩個不同實數(shù)根,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)指數(shù)函數(shù)的性質(zhì)及函數(shù)的圖象,再結(jié)合函數(shù)的零點與方程的根的關(guān)系即可求解.【詳解】由題意可知,方程SKIPIF1<0有兩個不同實數(shù)根,等價于函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個不同的交點,當(dāng)SKIPIF1<0時,如圖所示,由圖可知,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有兩個不同的交點,滿足題意當(dāng)SKIPIF1<0時,如圖所示由圖可知,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0與SKIPIF1<0的圖象有且僅有一個交點,不滿足題意,綜上所示,實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D.3.(河北省2023屆高三適應(yīng)性考試數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0,若SKIPIF1<0恰有兩個零點,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】將問題轉(zhuǎn)化為SKIPIF1<0恰有兩個實數(shù)根,求導(dǎo)確定函數(shù)的單調(diào)性,進而畫出函數(shù)的圖象,結(jié)合函數(shù)圖象即可確定SKIPIF1<0的取值.【詳解】SKIPIF1<0恰有兩個零點,即SKIPIF1<0恰有兩個實數(shù)根,由于SKIPIF1<0,所以SKIPIF1<0恰有兩個實數(shù)根等價于SKIPIF1<0恰有兩個實數(shù)根,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故當(dāng)SKIPIF1<0此時SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0,此時SKIPIF1<0單調(diào)遞減,故當(dāng)SKIPIF1<0時,SKIPIF1<0取極小值也是最小值,且當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,且SKIPIF1<0單調(diào)遞增,在直角坐標(biāo)系中畫出SKIPIF1<0的大致圖象如圖:要使SKIPIF1<0有兩個交點,則SKIPIF1<0,故選:D4.(天津市和平區(qū)2021-2022學(xué)年高一上學(xué)期期末質(zhì)量調(diào)查數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0有零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0有交點,再根據(jù)SKIPIF1<0值域求解即可.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0有零點,SKIPIF1<0與SKIPIF1<0有交點,SKIPIF1<0,即SKIPIF1<0,故選:C二、多選題5.(2023·山西晉中·統(tǒng)考三模)已知函數(shù)SKIPIF1<0,關(guān)于x的方程SKIPIF1<0,下列結(jié)論正確的是(

)A.存在SKIPIF1<0使方程恰有2個不相等的實根B.存在SKIPIF1<0使方程恰有4個不相等的實根C.存在SKIPIF1<0使方程恰有5個不相等的實根D.存在SKIPIF1<0使方程恰有6個不相等的實根【答案】AB【分析】令SKIPIF1<0,則SKIPIF1<0,利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0的單調(diào)性,由此確定方程SKIPIF1<0的解的個數(shù)及范圍,再結(jié)合二次函數(shù)性質(zhì)確定結(jié)論.【詳解】令SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,又當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0時,SKIPIF1<0,故函數(shù)SKIPIF1<0的大致圖象如下:所以當(dāng)SKIPIF1<0時,方程SKIPIF1<0沒有實根;當(dāng)SKIPIF1<0或SKIPIF1<0時,方程SKIPIF1<0有1個實根;當(dāng)SKIPIF1<0時,方程SKIPIF1<0有2個實根;當(dāng)SKIPIF1<0時,方程SKIPIF1<0有3個實根.因為方程SKIPIF1<0的判別式SKIPIF1<0,所以當(dāng)SKIPIF1<0,SKIPIF1<0,方程SKIPIF1<0沒有實根,故方程SKIPIF1<0無實根;當(dāng)SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0,故方程SKIPIF1<0有2個不等實根;當(dāng)SKIPIF1<0,SKIPIF1<0,方程SKIPIF1<0有2個不等實根t1,t2,不妨取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則必有SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0沒有實根,SKIPIF1<0有1個實根,所以方程SKIPIF1<0有1個實根;若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0有1個實根,SKIPIF1<0有1個實根,所以方程SKIPIF1<0有2個實根;若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0有3個實根,SKIPIF1<0有1個實根,所以方程SKIPIF1<0有4個實根,綜上所述:當(dāng)SKIPIF1<0時,方程SKIPIF1<0有1個實根;當(dāng)SKIPIF1<0或SKIPIF1<0時,方程SKIPIF1<0有2個實根;當(dāng)SKIPIF1<0時,方程SKIPIF1<0有4個實根;當(dāng)SKIPIF1<0時,方程SKIPIF1<0沒有實根.故選:AB.【點睛】關(guān)鍵點點睛:本題解決的關(guān)鍵在于通過換元,將問題轉(zhuǎn)化為方程組的解的問題,再利用數(shù)形結(jié)合方法及二次函數(shù)性質(zhì)研究方程的解.三、填空題6.(北京市昌平區(qū)2022屆高三二模數(shù)學(xué)試題)若函數(shù)SKIPIF1<0有且僅有兩個零點,則實數(shù)SKIPIF1<0的一個取值為______.【答案】SKIPIF1<0(答案不唯一)【分析】由零點的概念求解【詳解】令SKIPIF1<0,當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0為函數(shù)SKIPIF1<0的一個零點,故當(dāng)SKIPIF1<0時,SKIPIF1<0有一解,得SKIPIF1<0故答案為:SKIPIF1<0(答案不唯一)7.(天津市河西區(qū)2023屆高三一模數(shù)學(xué)試題)已知SKIPIF1<0,且函數(shù)SKIPIF1<0恰有SKIPIF1<0個不同的零點,則實數(shù)SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【分析】當(dāng)SKIPIF1<0時,由SKIPIF1<0得SKIPIF1<0,可轉(zhuǎn)化為當(dāng)SKIPIF1<0時,SKIPIF1<0恰有SKIPIF1<0個不同的零點,利用根的分布可得答案.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,所以由SKIPIF1<0得SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0恰有SKIPIF1<0個不同的零點,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0時恰有SKIPIF1<0個不同的零點,可得SKIPIF1<0,解得SKIPIF1<0,綜上,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.題型三二分法的應(yīng)用【典例1】人們很早以前就開始探索高次方程的數(shù)值求解問題.牛頓在《流數(shù)法》一書中,給出了高次代數(shù)方程的一種數(shù)值解法——牛頓法.這種求方程根的方法,在科學(xué)界已被廣泛采用.例如求方程SKIPIF1<0的近似解,先用函數(shù)零點存在定理,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0上存在零點,取SKIPIF1<0,牛頓用公式SKIPIF1<0反復(fù)迭代,以SKIPIF1<0作為SKIPIF1<0的近似解,迭代兩次后計算得到的近似解為______;以SKIPIF1<0為初始區(qū)間,用二分法計算兩次后,以最后一個區(qū)間的中點值作為方程的近似解,則近似解為______.【答案】SKIPIF1<0SKIPIF1<0【分析】第一空,理解消楚“迭代”的含義,實際上是一個遞推數(shù)列,反復(fù)代入給定的表達(dá)式,計算即可;第二空,根據(jù)二分法依次取區(qū)間中點值計算即可.【詳解】已知SKIPIF1<0,則SKIPIF1<0.迭代1次后,SKIPIF1<0;選代2次后,SKIPIF1<0;用二分法計算第1次,區(qū)間SKIPIF1<0的中點為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以近似解在區(qū)間SKIPIF1<0上;用二分法計算第2次,區(qū)間SKIPIF1<0的中點為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以近似解在區(qū)間SKIPIF1<0上,取其中點值SKIPIF1<0,故所求近似解為SKIPIF1<0.故答案為:SKIPIF1<0,SKIPIF1<0【題型訓(xùn)練】一、單選題1.(2023·全國·高三專題練習(xí))用二分法研究函數(shù)SKIPIF1<0的零點時,第一次經(jīng)過計算得SKIPIF1<0,SKIPIF1<0,則其中一個零點所在區(qū)間和第二次應(yīng)計算的函數(shù)值分別為(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】D【分析】根據(jù)函數(shù)零點的存在性定理可知零點SKIPIF1<0,結(jié)合對二分法的理解即可得出結(jié)果.【詳解】因為SKIPIF1<0,由零點存在性知:零點SKIPIF1<0,根據(jù)二分法,第二次應(yīng)計算SKIPIF1<0,即SKIPIF1<0,故選:D.2.(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的一個正數(shù)零點附近的函數(shù)值用二分法逐次計算,參考數(shù)據(jù)如下:SKIPIF1<0

SKIPIF1<0

SKIPIF1<0SKIPIF1<0

SKIPIF1<0

SKIPIF1<0那么方程的一個近似解(精確度為0.1)為(

)A.1.5 B.1.25 C.1.41 D.1.44【答案】C【分析】根據(jù)二分法的定義和精確度的要求分析判斷即可【詳解】由所給數(shù)據(jù)可知,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有一個根,因為SKIPIF1<0,SKIPIF1<0,所以根在SKIPIF1<0內(nèi),因為SKIPIF1<0,所以不滿足精確度,繼續(xù)取區(qū)間中點SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以根在區(qū)間SKIPIF1<0,因為SKIPIF1<0,所以不滿足精確度,繼續(xù)取區(qū)間中點SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以根在區(qū)間SKIPIF1<0內(nèi),因為SKIPIF1<0滿足精確度,因為SKIPIF1<0,所以根在SKIPIF1<0內(nèi),所以方程的一個近似解為SKIPIF1<0,故選:C3.(2023·全國·高三專題練習(xí))求下列函數(shù)的零點,可以采用二分法的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0不是單調(diào)函數(shù),SKIPIF1<0,不能用二分法求零點;SKIPIF1<0是單調(diào)函數(shù),SKIPIF1<0,能用二分法求零點;SKIPIF1<0不是單調(diào)函數(shù),SKIPIF1<0,不能用二分法求零點;SKIPIF1<0不是單調(diào)函數(shù),SKIPIF1<0,不能用二分法求零點.故選:B二、填空題4.(2023·全國·高三專題練習(xí))已知方程SKIPIF1<0的根在區(qū)間SKIPIF1<0上,第一次用二分法求其近似解時,其根所在區(qū)間應(yīng)為__________.【答案】SKIPIF1<0【分析】由題意構(gòu)造函數(shù)SKIPIF1<0,求方程的一個近似解,就是求函數(shù)在某個區(qū)間內(nèi)有零點,分析函數(shù)值的符號是否異號即可.【詳解】解:令SKIPIF1<0,其在定義域上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由f(2.5)f(3)<0知根所在區(qū)間為SKIPIF1<0.故答案為:SKIPIF1<0.題型四常見函數(shù)模型Ⅰ-二次和分段函數(shù)【典例1】在中國很多鄉(xiāng)村,燃放煙花爆竹仍然是慶祝新年來臨的一種方式,煙花爆竹帶來的空氣污染非常嚴(yán)重,可噴灑一定量的去污劑進行處理.據(jù)測算,每噴灑一個單位的去污劑,空氣中釋放的去污劑濃度SKIPIF1<0(單位:毫克/立方米)隨著時間SKIPIF1<0(單位:天)變化的函數(shù)關(guān)系式近似為SKIPIF1<0,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時刻所釋放的濃度之和,由試驗知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.(1)若一次噴灑4個單位的去污劑,則去污時間可達(dá)幾天?(2)若第一次噴灑2個單位的去污劑,6天后再噴灑SKIPIF1<0個單位的去污劑,要使接下來的3天能夠持續(xù)有效去污,求SKIPIF1<0的最小值.【答案】(1)7天(2)SKIPIF1<0【分析】(1)根據(jù)空氣中去污劑的濃度不低于4,直接列出不等式,然后解出不等式即可(2)根據(jù)題意,列出空氣中去污劑的濃度關(guān)于時間的關(guān)系式,然后利用基本不等式放縮,并解出不等式即可【詳解】(1)釋放的去污劑濃度為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0;故一次投放4個單位的去污劑,有效去污時間可達(dá)7天.(2)設(shè)從第一次噴灑起,經(jīng)SKIPIF1<0天,則濃度SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0等號成立.所以SKIPIF1<0的最小值為SKIPIF1<0.【題型訓(xùn)練】一、單選題1.(2023·全國·高三專題練習(xí))某科技企業(yè)為抓住“一帶一路”帶來的發(fā)展機遇,開發(fā)生產(chǎn)一智能產(chǎn)品,該產(chǎn)品每年的固定成本是25萬元,每生產(chǎn)SKIPIF1<0萬件該產(chǎn)品,需另投入成本SKIPIF1<0萬元.其中SKIPIF1<0,若該公司一年內(nèi)生產(chǎn)該產(chǎn)品全部售完,每件的售價為70元,則該企業(yè)每年利潤的最大值為(

)A.720萬元 B.800萬元C.875萬元 D.900萬元【答案】C【分析】先求得該企業(yè)每年利潤的解析式,再利用分段函數(shù)求最值的方法即可求得該企業(yè)每年利潤的最大值.【詳解】該企業(yè)每年利潤為SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時等號成立),即在SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0;由SKIPIF1<0,可得該企業(yè)每年利潤的最大值為SKIPIF1<0.故選:C2.(2023·全國·高三專題練習(xí))汽車在行駛中,由于慣性,剎車后還要繼續(xù)向前滑行一段距離才能停止,一般稱這段距離為“剎車距離”.剎車距

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論