




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省咸陽市秦都區2024屆中考數學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.x=1是關于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.12.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數為()A.15° B.55° C.65° D.75°3.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)4.《九章算術》中有這樣一個問題:“今有甲乙二人持錢不知其數,甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?”題意為:今有甲乙二人,不知其錢包里有多少錢,若乙把其一半的錢給甲,則甲的錢數為50;而甲把其的錢給乙,則乙的錢數也能為50,問甲、乙各有多少錢?設甲的錢數為x,乙的錢數為y,則列方程組為()A. B.C. D.5.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.6.已知二次函數(為常數),當時,函數的最小值為5,則的值為()A.-1或5 B.-1或3 C.1或5 D.1或37.如下圖所示,該幾何體的俯視圖是()A. B. C. D.8.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1259.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.10.若一次函數y=(2m﹣3)x﹣1+m的圖象不經過第三象限,則m的取值范圖是()A.1<m< B.1≤m< C.1<m≤ D.1≤m≤11.不透明袋子中裝有一個幾何體模型,兩位同學摸該模型并描述它的特征.甲同學:它有4個面是三角形;乙同學:它有8條棱.該模型的形狀對應的立體圖形可能是()A.三棱柱 B.四棱柱 C.三棱錐 D.四棱錐12.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數是()A.1 B.2 C.3 D.4二、填空題:(本大題共6個小題,每小題4分,共24分.)13.若正六邊形的邊長為2,則此正六邊形的邊心距為______.14.分解因式:a3﹣a=_____.15.點A(﹣3,y1),B(2,y2),C(3,y3)在拋物線y=2x2﹣4x+c上,則y1,y2,y3的大小關系是_____.16.如圖,矩形ABCD的對角線BD經過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數y=的圖象上,若點A的坐標為(﹣2,﹣2),則k的值為_____.17.如圖,在平面直角坐標系中,矩形活動框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點O為AB的中點,固定點A、B,把這個矩形活動框架沿箭頭方向推,使D落在y軸的正半軸上點D′處,點C的對應點C′的坐標為______.18.如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.20.(6分)已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.若△OCP與△PDA的面積比為1:4,求邊CD的長.如圖2,在(Ⅰ)的條件下,擦去折痕AO、線段OP,連接BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問當動點M、N在移動的過程中,線段EF的長度是否發生變化?若變化,說明變化規律.若不變,求出線段EF的長度.21.(6分)每到春夏交替時節,雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如下尚不完整的統計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調整樹種結構,逐漸更換現有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產生飛絮E.其他根據以上統計圖,解答下列問題:(1)本次接受調查的市民共有人;(2)扇形統計圖中,扇形E的圓心角度數是;(3)請補全條形統計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數.22.(8分)孔明同學對本校學生會組織的“為貧困山區獻愛心”自愿捐款活動進行抽樣調查,得到了一組學生捐款情況的數據.如圖是根據這組數據繪制的統計圖,圖中從左到右各長方形的高度之比為3:4:5:10:8,又知此次調查中捐款30元的學生一共16人.孔明同學調查的這組學生共有_______人;這組數據的眾數是_____元,中位數是_____元;若該校有2000名學生,都進行了捐款,估計全校學生共捐款多少元?23.(8分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉,旋轉角記為θ(0°≤θ≤90°),并使各邊長變為原來的n倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形24.(10分)如圖,在△ABC中,點D是AB邊的中點,點E是CD邊的中點,過點C作CF∥AB交AE的延長線于點F,連接BF.求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結論.25.(10分)如圖,在△ABC中,∠CAB=90°,∠CBA=50°,以AB為直徑作⊙O交BC于點D,點E在邊AC上,且滿足ED=EA.(1)求∠DOA的度數;(2)求證:直線ED與⊙O相切.26.(12分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.27.(12分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點:一元一次方程的解.2、D【解析】
根據鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.3、A【解析】
分順時針旋轉,逆時針旋轉兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉,解題的關鍵是利用空間想象能力.4、A【解析】
設甲的錢數為x,人數為y,根據“若乙把其一半的錢給甲,則甲的錢數為50;而甲把其的錢給乙,則乙的錢數也能為50”,即可得出關于x,y的二元一次方程組,此題得解.【詳解】解:設甲的錢數為x,乙的錢數為y,依題意,得:.故選A.【點睛】本題考查了由實際問題抽象出二元一次方程組,找準等量關系,正確列出二元一次方程組是解題的關鍵.5、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.6、A【解析】
由解析式可知該函數在x=h時取得最小值1,x>h時,y隨x的增大而增大;當x<h時,y隨x的增大而減小;根據1≤x≤3時,函數的最小值為5可分如下兩種情況:①若h<1,可得x=1時,y取得最小值5;②若h>3,可得當x=3時,y取得最小值5,分別列出關于h的方程求解即可.【詳解】解:∵x>h時,y隨x的增大而增大,當x<h時,y隨x的增大而減小,∴①若h<1,當時,y隨x的增大而增大,∴當x=1時,y取得最小值5,可得:,解得:h=?1或h=3(舍),∴h=?1;②若h>3,當時,y隨x的增大而減小,當x=3時,y取得最小值5,可得:,解得:h=5或h=1(舍),∴h=5,③若1≤h≤3時,當x=h時,y取得最小值為1,不是5,∴此種情況不符合題意,舍去.綜上所述,h的值為?1或5,故選:A.【點睛】本題主要考查二次函數的性質和最值,根據二次函數的性質和最值進行分類討論是解題的關鍵.7、B【解析】
根據俯視圖是從上面看到的圖形解答即可.【詳解】從上面看是三個長方形,故B是該幾何體的俯視圖.故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.8、B【解析】
根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.9、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.10、B【解析】
根據一次函數的性質,根據不等式組即可解決問題;【詳解】∵一次函數y=(2m-3)x-1+m的圖象不經過第三象限,∴,解得1≤m<.故選:B.【點睛】本題考查一次函數的圖象與系數的關系等知識,解題的關鍵是學會用轉化的思想思考問題,屬于中考常考題型.11、D【解析】試題分析:根據有四個三角形的面,且有8條棱,可知是四棱錐.而三棱柱有兩個三角形的面,四棱柱沒有三角形的面,三棱錐有四個三角形的面,但是只有6條棱.故選D考點:幾何體的形狀12、B【解析】試題分析:根據俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】
連接OA、OB,根據正六邊形的性質求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.14、a(a+1)(a﹣1)【解析】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案為:a(a+1)(a﹣1).15、y2<y3<y1【解析】
把點的坐標分別代入拋物線解析式可分別求得y1、y2、y3的值,比較可求得答案.【詳解】∵y=2x2-4x+c,∴當x=-3時,y1=2×(-3)2-4×(-3)+c=30+c,當x=2時,y2=2×22-4×2+c=c,當x=3時,y3=2×32-4×3+c=6+c,∵c<6+c<30+c,∴y2<y3<y1,故答案為y2<y3<y1.【點睛】本題主要考查二次函數圖象上點的坐標特征,掌握函數圖象上點的坐標滿足函數解析式是解題的關鍵.16、1【解析】試題分析:設點C的坐標為(x,y),則B(-2,y)D(x,-2),設BD的函數解析式為y=mx,則y=-2m,x=-,∴k=xy=(-2m)·(-)=1.考點:求反比例函數解析式.17、(2,1)【解析】
由已知條件得到AD′=AD=,AO=AB=1,根據勾股定理得到OD′==1,于是得到結論.【詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,
∴C′(2,1),
故答案為:(2,1)【點睛】本題考查了矩形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題的關鍵.18、4.1【解析】解:如圖所示:∵四邊形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根據題意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,設AP=EP=x,則PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根據勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案為4.1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2)1【解析】
(1)連接OC,可以證得△OAP≌△OCP,利用全等三角形的對應角相等,以及切線的性質定理可以得到:∠OCP=90°,即OC⊥PC,即可證得;(2)先證△OBC是等邊三角形得∠COB=60°,再由(1)中所證切線可得∠OCF=90°,結合半徑OC=1可得答案.【詳解】(1)連接OC.∵OD⊥AC,OD經過圓心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切線,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切線.(2)∵OB=OC,∠OBC=60°,∴△OBC是等邊三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC?tan∠COB=1.【點睛】本題考查了切線的性質定理以及判定定理,以及直角三角形三角函數的應用,證明圓的切線的問題常用的思路是根據切線的判定定理轉化成證明垂直的問題.20、(1)10;(2).【解析】
(1)先證出∠C=∠D=90°,再根據∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據△OCP與△PDA的面積比為1:4,得出CP=AD=4,設OP=x,則CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根據AB=2OP即可求出邊AB的長;(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據ME⊥PQ,得出EQ=PQ,根據∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的結論求出PB=,最后代入EF=PB即可得出線段EF的長度不變【詳解】(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴,∴CP=AD=4設OP=x,則CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴邊CD的長為10;(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=(PQ+QB)=PB,由(1)中的結論可得:PC=4,BC=8,∠C=90°,∴PB=,∴EF=PB=2,∴在(1)的條件下,當點M、N在移動過程中,線段EF的長度不變,它的長度為2.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、勾股定理、等腰三角形的性質,關鍵是做出輔助線,找出全等和相似的三角形21、(1)2000;(2)28.8°;(3)補圖見解析;(4)36萬人.【解析】分析:(1)將A選項人數除以總人數即可得;(2)用360°乘以E選項人數所占比例可得;(3)用總人數乘以D選項人數所占百分比求得其人數,據此補全圖形即可得;(4)用總人數乘以樣本中C選項人數所占百分比可得.詳解:(1)本次接受調查的市民人數為300÷15%=2000人,(2)扇形統計圖中,扇形E的圓心角度數是360°×=28.8°,(3)D選項的人數為2000×25%=500,補全條形圖如下:(4)估計贊同“選育無絮楊品種,并推廣種植”的人數為90×40%=36(萬人).點睛:本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.22、(1)60;(2)20,20;(3)38000【解析】
(1)利用從左到右各長方形高度之比為3:4:5:10:8,可設捐5元、10元、15元、20元和30元的人數分別為3x、4x、5x、10x、8x,則根據題意得8x=1,解得x=2,然后計算3x+4x+5x++10x+8x即可;(2)先確定各組的人數,然后根據中位數和眾數的定義求解;(3)先計算出樣本的加權平均數,然后利用樣本平均數估計總體,用2000乘以樣本平均數即可.【詳解】(1)設捐5元、10元、15元、20元和30元的人數分別為3x、4x、5x、10x、8x,則8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人數分別為6,8,10,20,1.∵20出現次數最多,∴眾數為20元;∵共有60個數據,第30個和第31個數據落在第四組內,∴中位數為20元;(3)2000=38000(元),∴估算全校學生共捐款38000元.【點睛】本題考查了條形統計圖:條形統計圖是用線段長度表示數據,根據數量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.也考查了樣本估計總體、中位數與眾數.23、(1);(2);(3).【解析】
(1)根據定義可知△ABC∽△AB′C′,再根據相似三角形的面積之比等于相似比的平方即可;(2)根據四邊形是矩形,得出,進而得出,根據30°直角三角形的性質即可得出答案;(3)根據四邊形ABB′C′為正方形,從而得出,再根據等腰直角三角形的性質即可得出答案.【詳解】解:(1)∵△AB′C′的邊長變為了△ABC的n倍,∴△ABC∽△AB′C′,∴,故答案為:.(2)四邊形是矩形,∴..在中,,...(3)若四邊形ABB′C′為正方形,則,,∴,∴,又∵在△ABC中,AB=,∴,∴故答案為:.【點睛】本題考查了幾何變換中的新定義問題,以及相似三角形的判定和性質,理解[θ,n]的意義是解題的關鍵.24、(1)證明見解析;(2)四邊形BDCF是矩形,理由見解析.【解析】(1)證明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四邊形BDCF是矩形.證明:由(1)知DB=CF,又DB∥CF,∴四邊形BDCF為平行四邊形.∵AC=BC,AD=DB,∴CD⊥AB.∴四邊形BDCF是矩形.25、(1)∠DOA=100°;(2)證明見解析.【解析】試題分析:(1)根據∠CBA=50°,利用圓周角定理即可求得∠DOA的度數;(2)連接OE,利用SSS證明△EAO≌△EDO,根據全等三角形的性質可得∠EDO=∠EAO=90°,即可證明直線ED與⊙O相切.試題解析:(1)∵∠DBA=50°,∴∠DOA=2∠DBA=100°;(2)證明:連接OE,在△EAO和△EDO中,AO=DO,EA=ED,EO=EO,∴△EAO≌△EDO,得到∠EDO=∠EAO=90°,∴直線ED與⊙O相切.考點:圓周角定理;全等三角形的判定及性質;切線的判定定理26、(1)拋物線的解析式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云計算安全-洞察闡釋
- 藝術技術融合-虛擬雕塑的市場潛力-洞察闡釋
- 窗簾行業電商發展態勢-洞察闡釋
- 多模態感知提升手勢交互體驗-洞察闡釋
- 動態需求預測與天然氣供應鏈風險管理研究-洞察闡釋
- 氣候變化與碳匯研究-洞察闡釋
- 知識產權糾紛解決-洞察闡釋
- 納米類藥物在脂質代謝病中的靶向遞送研究-洞察闡釋
- 自適應動態面控制-洞察闡釋
- 基于知識圖譜的語言規劃研究-洞察闡釋
- 浙江省杭州市2024年中考英語真題(含答案)
- 2024年黑龍江省哈爾濱市中考數學試卷(附答案)
- 《陸上風電場工程設計概算編制規定及費用標準》(NB-T 31011-2019)
- JJF1664-2017溫度顯示儀校準規范-(高清現行)
- 銑床安全操作作業指導書
- 土地開發整理項目預算定額
- 消防管理制度的制作張貼規范及圖例
- 古河鉆機HCR1200構造說明中文
- CT報告單--自己填
- DB4403∕T 199-2021 中醫藥健康文化宣教旅游示范基地評定規范
- 福州供電段接觸網設備檢修工藝
評論
0/150
提交評論