浙江省蒼南縣重點名校2024屆中考三模數學試題含解析_第1頁
浙江省蒼南縣重點名校2024屆中考三模數學試題含解析_第2頁
浙江省蒼南縣重點名校2024屆中考三模數學試題含解析_第3頁
浙江省蒼南縣重點名校2024屆中考三模數學試題含解析_第4頁
浙江省蒼南縣重點名校2024屆中考三模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省蒼南縣重點名校2024屆中考三模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.4的平方根是()A.4 B.±4 C.±2 D.22.關于x的正比例函數,y=(m+1)若y隨x的增大而減小,則m的值為()A.2 B.-2 C.±2 D.-3.下列說法中正確的是()A.檢測一批燈泡的使用壽命適宜用普查.B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就一定有5次正面朝上.C.“367人中有兩人是同月同日生”為必然事件.D.“多邊形內角和與外角和相等”是不可能事件.4.若一組數據2,3,,5,7的眾數為7,則這組數據的中位數為()A.2 B.3 C.5 D.75.如圖,由5個完全相同的小正方體組合成一個立體圖形,它的左視圖是()A. B. C. D.6.關于x的不等式的解集為x>3,那么a的取值范圍為()A.a>3 B.a<3 C.a≥3 D.a≤37.甲、乙兩名同學進行跳高測試,每人10次跳高的平均成績恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩定 D.無法確定8.已知A(,),B(2,)兩點在雙曲線上,且,則m的取值范圍是()A. B. C. D.9.若代數式的值為零,則實數x的值為()A.x=0 B.x≠0 C.x=3 D.x≠310.如圖,D是等邊△ABC邊AD上的一點,且AD:DB=1:2,現將△ABC折疊,使點C與D重合,折痕為EF,點E、F分別在AC、BC上,則CE:CF=()A. B. C. D.11.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數為()A.62° B.38° C.28° D.26°12.不等式組的正整數解的個數是()A.5 B.4 C.3 D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一組數據1,2,x,2,3,3,5,7的眾數是2,則這組數據的中位數是.14.當x=_________時,分式的值為零.15.已知袋中有若干個小球,它們除顏色外其它都相同,其中只有2個紅球,若隨機從中摸出一個,摸到紅球的概率是,則袋中小球的總個數是_____16.如果分式的值是0,那么x的值是______.17.已知二次函數的圖象如圖所示,有下列結論:,,;,,其中正確的結論序號是______18.如圖,在□ABCD中,用直尺和圓規作∠BAD的平分線AG,若AD=5,DE=6,則AG的長是________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.20.(6分)先化簡,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整數解.21.(6分)如圖,在平面直角坐標系中,直線y1=2x+b與坐標軸交于A、B兩點,與雙曲線(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,點B的坐標為(0,﹣2).(1)求直線y1=2x+b及雙曲線(x>0)的表達式;(2)當x>0時,直接寫出不等式的解集;(3)直線x=3交直線y1=2x+b于點E,交雙曲線(x>0)于點F,求△CEF的面積.22.(8分)在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.23.(8分)已知,拋物線的頂點為,它與軸交于點,(點在點左側).()求點、點的坐標;()將這個拋物線的圖象沿軸翻折,得到一個新拋物線,這個新拋物線與直線交于點.①求證:點是這個新拋物線與直線的唯一交點;②將新拋物線位于軸上方的部分記為,將圖象以每秒個單位的速度向右平移,同時也將直線以每秒個單位的速度向上平移,記運動時間為,請直接寫出圖象與直線有公共點時運動時間的范圍.24.(10分)如圖,矩形ABCD繞點C順時針旋轉90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.25.(10分)甲、乙兩人在玩轉盤游戲時,把兩個可以自由轉動的轉盤A,B都分成3等份的扇形區域,并在每一小區域內標上數字(如圖所示),游戲規則:同時轉動兩個轉盤,當轉盤停止后,若指針所指兩個區域的數字之和為3的倍數,則甲獲勝;若指針所指兩個區域的數字之和為4的倍數,則乙獲勝.如果指針落在分割線上,則需要重新轉動轉盤.請問這個游戲對甲、乙雙方公平嗎?說明理由.26.(12分)P是外一點,若射線PC交于點A,B兩點,則給出如下定義:若,則點P為的“特征點”.當的半徑為1時.在點、、中,的“特征點”是______;點P在直線上,若點P為的“特征點”求b的取值范圍;的圓心在x軸上,半徑為1,直線與x軸,y軸分別交于點M,N,若線段MN上的所有點都不是的“特征點”,直接寫出點C的橫坐標的取值范圍.27.(12分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結果保留整數)參考數據:sin37≈0.60,cos37°=0.80,tan37°≈0.75

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據平方根的定義,求數a的平方根,也就是求一個數x,使得x1=a,則x就是a的平方根,由此即可解決問題.【詳解】∵(±1)1=4,∴4的平方根是±1.故選D.【點睛】本題考查了平方根的定義.注意一個正數有兩個平方根,它們互為相反數;0的平方根是0;負數沒有平方根.2、B【解析】

根據正比例函數定義可得m2-3=1,再根據正比例函數的性質可得m+1<0,再解即可.【詳解】由題意得:m2-3=1,且m+1<0,解得:m=-2,故選:B.【點睛】此題主要考查了正比例函數的性質和定義,關鍵是掌握正比例函數y=kx(k≠0)的自變量指數為1,當k<0時,y隨x的增大而減小.3、C【解析】【分析】根據相關的定義(調查方式,概率,可能事件,必然事件)進行分析即可.【詳解】A.檢測一批燈泡的使用壽命不適宜用普查,因為有破壞性;B.拋擲一枚均勻的硬幣,正面朝上的概率是,如果拋擲10次,就可能有5次正面朝上,因為這是隨機事件;C.“367人中有兩人是同月同日生”為必然事件.因為一年只有365天或366天,所以367人中至少有兩個日子相同;D.“多邊形內角和與外角和相等”是可能事件.如四邊形內角和和外角和相等.故正確選項為:C【點睛】本題考核知識點:對(調查方式,概率,可能事件,必然事件)理解.解題關鍵:理解相關概念,合理運用舉反例法.4、C【解析】試題解析:∵這組數據的眾數為7,∴x=7,則這組數據按照從小到大的順序排列為:2,3,1,7,7,中位數為:1.故選C.考點:眾數;中位數.5、B【解析】試題分析:從左面看易得第一層有2個正方形,第二層最左邊有一個正方形.故選B.考點:簡單組合體的三視圖.6、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集.解集的規律:同大取大;同小取小;大小小大中間找;大大小小找不到.7、A【解析】

根據方差的意義可作出判斷.方差是用來衡量一組數據波動大小的量,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學成績更穩定的是甲;故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數據波動大小的量,方差越大,表明這組數據偏離平均數越大,即波動越大,數據越不穩定;反之,方差越小,表明這組數據分布比較集中,各數據偏離平均數越小,即波動越小,數據越穩定.8、D【解析】

∵A(,),B(2,)兩點在雙曲線上,∴根據點在曲線上,點的坐標滿足方程的關系,得.∵,∴,解得.故選D.【詳解】請在此輸入詳解!9、A【解析】

根據分子為零,且分母不為零解答即可.【詳解】解:∵代數式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.10、B【解析】

解:由折疊的性質可得,∠EDF=∠C=60o,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120o可得∠ADE=∠BFD,又因∠A=∠B=60o,根據兩角對應相等的兩三角形相似可得△AED∽△BDF所以,設AD=a,BD=2a,AB=BC=CA=3a,再設CE==DE=x,CF==DF=y,則AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故選B.【點睛】本題考查相似三角形的判定及性質.11、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質.注意:根據斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關鍵.12、C【解析】

先解不等式組得到-1<x≤3,再找出此范圍內的正整數.【詳解】解不等式1-2x<3,得:x>-1,

解不等式≤2,得:x≤3,

則不等式組的解集為-1<x≤3,

所以不等式組的正整數解有1、2、3這3個,

故選C.【點睛】本題考查了一元一次不等式組的整數解,解題的關鍵是正確得出一元一次不等式組的解集.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2.1【解析】試題分析:∵數據1,2,x,2,3,3,1,7的眾數是2,∴x=2,∴這組數據的中位數是(2+3)÷2=2.1;故答案為2.1.考點:1、眾數;2、中位數14、2【解析】

根據若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1計算即可.【詳解】解:依題意得:2﹣x=1且2x+2≠1.解得x=2,故答案為2.【點睛】本題考查的是分式為1的條件和一元二次方程的解法,掌握若分式的值為零,需同時具備兩個條件:(1)分子為1;(2)分母不為1是解題的關鍵.15、8個【解析】

根據概率公式結合取出紅球的概率即可求出袋中小球的總個數.【詳解】袋中小球的總個數是:2÷=8(個).故答案為8個.【點睛】本題考查了概率公式,根據概率公式算出球的總個數是解題的關鍵.16、1.【解析】

根據分式為1的條件得到方程,解方程得到答案.【詳解】由題意得,x=1,故答案是:1.【點睛】本題考查分式的值為零的條件,分式為1需同時具備兩個條件:(1)分子為1;(2)分母不為1.這兩個條件缺一不可.17、【解析】

由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】由圖象可知:拋物線開口方向向下,則,對稱軸直線位于y軸右側,則a、b異號,即,拋物線與y軸交于正半軸,則,,故正確;對稱軸為,,故正確;由拋物線的對稱性知,拋物線與x軸的另一個交點坐標為,所以當時,,即,故正確;拋物線與x軸有兩個不同的交點,則,所以,故錯誤;當時,,故正確.故答案為.【點睛】本題考查了考查了圖象與二次函數系數之間的關系,二次函數系數符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數確定.18、2【解析】試題解析:連接EG,

∵由作圖可知AD=AE,AG是∠BAD的平分線,

∴∠1=∠2,

∴AG⊥DE,OD=DE=1.

∵四邊形ABCD是平行四邊形,

∴CD∥AB,

∴∠2=∠1,

∴∠1=∠1,

∴AD=DG.

∵AG⊥DE,

∴OA=AG.

在Rt△AOD中,OA==4,

∴AG=2AO=2.

故答案為2.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=12x2-x-4(2)點M的坐標為(2,-4)(3)-83【解析】【分析】(1)設交點式y=a(x+2)(x-4),然后把C點坐標代入求出a即可得到拋物線解析式;

(2)連接OM,設點M的坐標為m,12m2-m-4.由題意知,當四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM(3)拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設點Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設點M的坐標為m,1由題意知,當四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當m=2時,四邊形OAMC面積最大,此時陰影部分面積最小,所以點M的坐標為(2,-4).(3)∵拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設點Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點P的橫坐標為-83或-4【點睛】本題考核知識點:二次函數綜合運用.解題關鍵點:熟記二次函數的性質,數形結合,由所求分析出必知條件.20、,1.【解析】

首先化簡(﹣a)÷(1+),然后根據a是不等式﹣<a<的整數解,求出a的值,再把求出的a的值代入化簡后的算式,求出算式的值是多少即可.【詳解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整數解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,當a=1時,原式==1.21、(1)直線解析式為y1=2x﹣2,雙曲線的表達式為y2=(x>0);(2)0<x<2;(3)【解析】

(1)將點B的代入直線y1=2x+b,可得b,則可以求得直線解析式;令y=0可得A點坐標為(1,0),又因為OA=AD,則D點坐標為(2,0),把x=2代入直線解析式,可得y=2,從而得到點C的坐標為(2,2),在把(2,2)代入雙曲線y2=,可得k=4,則雙曲線的表達式為y2=(x>0).(2)由x的取值范圍,結合圖像可求得答案.(3)把x=3代入y2函數,可得y=;把x=3代入y1函數,可得y=4,從而得到EF,由三角形的面積公式可得S△CEF=.【詳解】解:(1)將點B的坐標(0,﹣2)代入直線y1=2x+b,可得﹣2=b,∴直線解析式為y1=2x﹣2,令y=0,則x=1,∴A(1,0),∵OA=AD,∴D(2,0),把x=2代入y1=2x﹣2,可得y=2,∴點C的坐標為(2,2),把(2,2)代入雙曲線y2=,可得k=2×2=4,∴雙曲線的表達式為y2=(x>0);(2)當x>0時,不等式>2x+b的解集為0<x<2;(3)把x=3代入y2=,可得y=;把x=3代入y1=2x﹣2,可得y=4,∴EF=4﹣=,∴S△CEF=××(3﹣2)=,∴△CEF的面積為.【點睛】本題考察了一次函數和雙曲線例函數的綜合;熟練掌握由點求解析式是解題的關鍵;能夠結合圖形及三角形面積公式是解題的關鍵.22、(1)證明見解析;(2)當∠CAB=60°時,四邊形ADFE為菱形;證明見解析;【解析】分析(1)首先利用平行線的性質得到∠FAB=∠CAB,然后利用SAS證得兩三角形全等,得出對應角相等即可;(2)當∠CAB=60°時,四邊形ADFE為菱形,根據∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進行判斷四邊形ADFE是菱形.詳解:(1)證明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA=∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF是⊙A的切線.(2)當∠CAB=60°時,四邊形ADFE為菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等邊三角形∴AE=EF,∵AE=AD∴EF=AD∴四邊形ADFE是平行四邊形∵AE=EF∴平行四邊形ADFE為菱形.點睛:本題考查了菱形的判定、全等三角形的判定與性質及圓周角定理的知識,解題的關鍵是了解菱形的判定方法及全等三角形的判定方法,難度不大.23、(1)B(-3,0),C(1,0);(2)①見解析;②≤t≤6.【解析】

(1)根據拋物線的頂點坐標列方程,即可求得拋物線的解析式,令y=0,即可得解;(2)①根據翻折的性質寫出翻折后的拋物線的解析式,與直線方程聯立,求得交點坐標即可;②當t=0時,直線與拋物線只有一個交點N(3,-6)(相切),此時直線與G無交點;第一個交點出現時,直線過點C(1+t,0),代入直線解析式:y=-4x+6+t,解得t=;最后一個交點是B(-3+t,0),代入y=-4x+6+t,解得t=6,所以≤t≤6.【詳解】(1)因為拋物線的頂點為M(-1,-2),所以對稱軸為x=-1,可得:,解得:a=,c=,所以拋物線解析式為y=x2+x,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);(2)①翻折后的解析式為y=-x2-x,與直線y=-4x+6聯立可得:x2-3x+=0,解得:x1=x2=3,所以該一元二次方程只有一個根,所以點N(3,-6)是唯一的交點;②≤t≤6.【點睛】本題主要考查了圖形運動,解本題的要點在于熟知一元二次方程的相關知識點.24、(1)見解析;(2)見解析.【解析】

(1)由旋轉性質可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,則HF=FG=AD,所以可證△ADM≌△MHF,結論可得.(2)作FN⊥DG垂足為N,且MF=FG,可得HN=GN,且DM=MH,可證2MN=DG,由第一問可得2MF=AF,由cosα=cos∠FMG=,代入可證結論成立【詳解】(1)由旋轉性質可知:CD=CG且∠DCG=90°,∴∠DGC=45°從而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋轉可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)作FN⊥DG垂足為N∵△ADM≌△MFH∴DM=MH,AM=MF=AF∵FH=FG,FN⊥HG∴HN=NG∵DG=DM+HM+HN+NG=2(MH+HN)∴MN=DG∵cos∠FMG=∴cos∠AMD=∴=cosα【點睛】本題考查旋轉的性質,矩形的性質,全等三角形的判定,三角函數,關鍵是構造直角三角形.25、見解析【解析】

解:不公平,理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論