浙江省長興縣古城中學2024年初中數學畢業考試模擬沖刺卷含解析_第1頁
浙江省長興縣古城中學2024年初中數學畢業考試模擬沖刺卷含解析_第2頁
浙江省長興縣古城中學2024年初中數學畢業考試模擬沖刺卷含解析_第3頁
浙江省長興縣古城中學2024年初中數學畢業考試模擬沖刺卷含解析_第4頁
浙江省長興縣古城中學2024年初中數學畢業考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省長興縣古城中學2024年初中數學畢業考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.2.關于x的不等式的解集為x>3,那么a的取值范圍為()A.a>3 B.a<3 C.a≥3 D.a≤33.一元一次不等式2(1+x)>1+3x的解集在數軸上表示為()A. B. C. D.4.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.325.小明和小張兩人練習電腦打字,小明每分鐘比小張少打6個字,小明打120個字所用的時間和小張打180個字所用的時間相等.設小明打字速度為x個/分鐘,則列方程正確的是()A. B. C. D.6.如圖,點A,B為定點,定直線l//AB,P是l上一動點.點M,N分別為PA,PB的中點,對于下列各值:①線段MN的長;②△PAB的周長;③△PMN的面積;④直線MN,AB之間的距離;⑤∠APB的大小.其中會隨點P的移動而變化的是()A.②③ B.②⑤ C.①③④ D.④⑤7.﹣的絕對值是()A.﹣ B.﹣ C. D.8.如圖,兩個反比例函數y1=(其中k1>0)和y2=在第一象限內的圖象依次是C1和C2,點P在C1上.矩形PCOD交C2于A、B兩點,OA的延長線交C1于點E,EF⊥x軸于F點,且圖中四邊形BOAP的面積為6,則EF:AC為()A.:1 B.2: C.2:1 D.29:149.下列四個不等式組中,解集在數軸上表示如圖所示的是()A. B. C. D.10.下列各數:1.414,,﹣,0,其中是無理數的為()A.1.414 B. C.﹣ D.0二、填空題(本大題共6個小題,每小題3分,共18分)11.若m+=3,則m2+=_____.12.分解因式:ab2﹣9a=_____.13.拋物線y=x2﹣4x+與x軸的一個交點的坐標為(1,0),則此拋物線與x軸的另一個交點的坐標是______.14.化簡:_____________.15.閱讀以下作圖過程:第一步:在數軸上,點O表示數0,點A表示數1,點B表示數5,以AB為直徑作半圓(如圖);第二步:以B點為圓心,1為半徑作弧交半圓于點C(如圖);第三步:以A點為圓心,AC為半徑作弧交數軸的正半軸于點M.請你在下面的數軸中完成第三步的畫圖(保留作圖痕跡,不寫畫法),并寫出點M表示的數為______.16.方程的解為.三、解答題(共8題,共72分)17.(8分)如圖,已知某水庫大壩的橫斷面是梯形ABCD,壩頂寬AD是6米,壩高14米,背水坡AB的坡度為1:3,迎水坡CD的坡度為1:1.求:(1)背水坡AB的長度.(1)壩底BC的長度.18.(8分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標;(2)當△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標.19.(8分)為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).20.(8分)如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米.參考數據:≈1.414,≈1.732)21.(8分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載,某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道l上確定點D,使CD與l垂直,測得CD的長等于24米,在l上點D的同側取點A、B,使∠CAD=30°,∠CBD=60°.求AB的長(結果保留根號);已知本路段對校車限速為45千米/小時,若測得某輛校車從A到B用時1.5秒,這輛校車是否超速?說明理由.(參考數據:≈1.7,≈1.4)22.(10分)如圖,在平面直角坐標系xOy中,已知正比例函數與一次函數的圖像交于點A,(1)求點A的坐標;(2)設x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側),分別交和的圖像于點B、C,連接OC,若BC=OA,求△OBC的面積.23.(12分)計算:.24.計算:+()-2-8sin60°

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:延長GH交AD于點P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點睛:本題主要考查矩形的性質,解題的關鍵是掌握全等三角形的判定與性質、矩形的性質、勾股定理等知識點.2、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集.解集的規律:同大取大;同小取小;大小小大中間找;大大小小找不到.3、B【解析】

按照解一元一次不等式的步驟求解即可.【詳解】去括號,得2+2x>1+3x;移項合并同類項,得x<1,所以選B.【點睛】數形結合思想是初中常用的方法之一.4、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質,相似三角形的判定與性質等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.5、C【解析】

解:因為設小明打字速度為x個/分鐘,所以小張打字速度為(x+6)個/分鐘,根據關系:小明打120個字所用的時間和小張打180個字所用的時間相等,可列方程得,故選C.【點睛】本題考查列分式方程解應用題,找準題目中的等量關系,難度不大.6、B【解析】試題分析:①、MN=AB,所以MN的長度不變;②、周長C△PAB=(AB+PA+PB),變化;③、面積S△PMN=S△PAB=×AB·h,其中h為直線l與AB之間的距離,不變;④、直線NM與AB之間的距離等于直線l與AB之間的距離的一半,所以不變;⑤、畫出幾個具體位置,觀察圖形,可知∠APB的大小在變化.故選B考點:動點問題,平行線間的距離處處相等,三角形的中位線7、C【解析】

根據負數的絕對值是它的相反數,可得答案.【詳解】│-│=,A錯誤;│-│=,B錯誤;││=,D錯誤;││=,故選C.【點睛】本題考查了絕對值,解題的關鍵是掌握絕對值的概念進行解題.8、A【解析】試題分析:首先根據反比例函數y2=的解析式可得到=×3=,再由陰影部分面積為6可得到=9,從而得到圖象C1的函數關系式為y=,再算出△EOF的面積,可以得到△AOC與△EOF的面積比,然后證明△EOF∽△AOC,根據對應邊之比等于面積比的平方可得到EF﹕AC=.故選A.考點:反比例函數系數k的幾何意義9、D【解析】

此題涉及的知識點是不等式組的表示方法,根據規律可得答案.【詳解】由解集在數軸上的表示可知,該不等式組為,故選D.【點睛】本題重點考查學生對于在數軸上表示不等式的解集的掌握程度,不等式組的解集的表示方法:大小小大取中間是解題關鍵.10、B【解析】試題分析:根據無理數的定義可得是無理數.故答案選B.考點:無理數的定義.二、填空題(本大題共6個小題,每小題3分,共18分)11、7【解析】分析:把已知等式兩邊平方,利用完全平方公式化簡,即可求出答案.詳解:把m+=3兩邊平方得:(m+)2=m2++2=9,則m2+=7,故答案為:7點睛:此題考查了分式的混合運算,以及完全平方公式,熟練掌握運算法則及公式是解本題的關鍵.12、a(b+3)(b﹣3).【解析】

根據提公因式,平方差公式,可得答案.【詳解】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案為:a(b+3)(b﹣3).【點睛】本題考查了因式分解,一提,二套,三檢查,分解要徹底.13、(3,0)【解析】

把交點坐標代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點的橫坐標.【詳解】把點(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個交點的坐標是(3,0).故答案為(3,0).【點睛】本題考查了點的坐標與拋物線解析式的關系,拋物線與x軸交點坐標的求法.本題也可以用根與系數關系直接求解.14、【解析】

根據分式的運算法則即可求解.【詳解】原式=.故答案為:.【點睛】此題主要考查分式的運算,解題的關鍵是熟知分式的運算法則.15、作圖見解析,【解析】解:如圖,點M即為所求.連接AC、BC.由題意知:AB=4,BC=1.∵AB為圓的直徑,∴∠ACB=90°,則AM=AC===,∴點M表示的數為.故答案為.點睛:本題主要考查作圖﹣尺規作圖,解題的關鍵是熟練掌握尺規作圖和圓周角定理及勾股定理.16、.【解析】試題分析:首先去掉分母,觀察可得最簡公分母是,方程兩邊乘最簡公分母,可以把分式方程轉化為整式方程求解,然后解一元一次方程,最后檢驗即可求解:,經檢驗,是原方程的根.三、解答題(共8題,共72分)17、(1)背水坡的長度為米;(1)壩底的長度為116米.【解析】

(1)分別過點、作,垂足分別為點、,結合題意求得AM,MN,在中,得BM,再利用勾股定理即可.(1)在中,求得CN即可得到BC.【詳解】(1)分別過點、作,垂足分別為點、,根據題意,可知(米),(米)在中∵,∴(米),∵,∴(米).答:背水坡的長度為米.(1)在中,,∴(米),∴(米)答:壩底的長度為116米.【點睛】本題考查的知識點是解直角三角形的應用-坡度坡角問題,解題的關鍵是熟練的掌握解直角三角形的應用-坡度坡角問題.18、(1)y=x2﹣x,點D的坐標為(2,﹣);(2)t=2;(3)M點的坐標為(2,0)或(6,0).【解析】

(1)利用待定系數法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標;(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),根據相似三角形的判定方法,當時,△AME∽△COD,即|t-4|:4=|t2-t|:,當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應的M點的坐標.【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當CM⊥OA時,CM的值最小,△AMN的周長最小,此時OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當時,△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時M點坐標為(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此時M點坐標為(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);綜上所述,M點的坐標為(2,0)或(6,0).【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質、平行四邊形的性質和菱形的判定與性質;會利用待定系數法求函數解析式;理解坐標與圖形性質;熟練掌握相似三角形的判定方法;會運用分類討論的思想解決數學問題.19、100米.【解析】【分析】如圖,作PC⊥AB于C,構造出Rt△PAC與Rt△PBC,求出AB的長度,利用特殊角的三角函數值進行求解即可得.【詳解】如圖,過P點作PC⊥AB于C,由題意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=,∴AC=PC,在Rt△PBC中,tan∠PBC=,∴BC=PC,∵AB=AC+BC=PC+PC=10×40=400,∴PC=100,答:建筑物P到賽道AB的距離為100米.【點睛】本題考查了解直角三角形的應用,正確添加輔助線構造直角三角形,利用特殊角的三角函數值進行解答是關鍵.20、2.7米【解析】解:作BF⊥DE于點F,BG⊥AE于點G在Rt△ADE中∵tan∠ADE=,∴DE="AE"·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=,∴EF=BG=5,BF=AG+AE=+15∵∠CBF=45°∴CF=BF=+15∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7答:這塊宣傳牌CD的高度為2.7米.21、(1);(2)此校車在AB路段超速,理由見解析.【解析】

(1)結合三角函數的計算公式,列出等式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論