云南省騰沖市十五所學校2022-2023學年數學九上期末監測模擬試題含解析_第1頁
云南省騰沖市十五所學校2022-2023學年數學九上期末監測模擬試題含解析_第2頁
云南省騰沖市十五所學校2022-2023學年數學九上期末監測模擬試題含解析_第3頁
云南省騰沖市十五所學校2022-2023學年數學九上期末監測模擬試題含解析_第4頁
云南省騰沖市十五所學校2022-2023學年數學九上期末監測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,是等邊三角形,被一矩形所截,被截成三等分,EH∥BC,則四邊形的面積是的面積的:()A. B. C. D.2.下列四個點中,在反比例函數y=的圖象上的是()A.(﹣3,﹣2) B.(3,2) C.(﹣2,3) D.(﹣2,﹣3)3.在平面直角坐標系中,點所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.把二次函數y=﹣(x+1)2﹣3的圖象沿著x軸翻折后,得到的二次函數有()A.最大值y=3 B.最大值y=﹣3 C.最小值y=3 D.最小值y=﹣35.如圖,在菱形ABCD中,對角線AC與BD相交于點O,若AB=4,cos∠ABC=,則BD的長為()A.2 B.4 C.2 D.46.在一個萬人的小鎮,隨機調查了人,其中人看某電視臺的早間新聞,在該鎮隨便問一個人,他看該電視臺早間新聞的概率大約是()A. B. C. D.7.如圖,以AB為直徑,點O為圓心的半圓經過點C,若AC=BC=,則圖中陰影部分的面積是()A. B. C. D.8.一條排水管的截面如圖所示,已知排水管的半徑OB=10,水面寬AB=16,則截面圓心O到水面的距離OC是()A.4 B.5 C.6 D.69.已知關于x的方程x2﹣x+m=0的一個根是3,則另一個根是()A.﹣6 B.6 C.﹣2 D.210.如圖,四邊形的頂點坐標分別為.如果四邊形與四邊形位似,位似中心是原點,它的面積等于四邊形面積的倍,那么點的坐標可以是()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,將放在邊長為1的小正方形組成的網格中,若點A,O,B都在格點上,則___________________.12.如圖,在邊長為1的正方形網格中,.線段與線段存在一種變換關系,即其中一條線段繞著某點旋轉一個角度可以得到另一條線段,則這個旋轉中心的坐標為__________.13.已知⊙半徑為,點在⊙上,,則線段的最大值為_____.14.若=,則的值為______.15.如圖,港口A在觀測站O的正東方向,OA=4.某船從港口A出發,沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為____.

16.如圖,點A,B是雙曲線上的點,分別過點A,B作軸和軸的垂線段,若圖中陰影部分的面積為2,則兩個空白矩形面積的和為____________.17.如圖,在菱形中,對角線交于點,過點作于點,已知BO=4,S菱形ABCD=24,則___.18.如圖,在邊長為6的等邊△ABC中,D為AC上一點,AD=2,P為BD上一點,連接CP,以CP為邊,在PC的右側作等邊△CPQ,連接AQ交BD延長線于E,當△CPQ面積最小時,QE=____________.三、解答題(共66分)19.(10分)用適當的方法解下列一元二次方程.(1);(2).20.(6分)在平面直角坐標系中,將二次函數的圖象向右平移1個單位,再向下平移2個單位,得到如圖所示的拋物線,該拋物線與軸交于點、(點在點的左側),,經過點的一次函數的圖象與軸正半軸交于點,且與拋物線的另一個交點為,的面積為1.(1)求拋物線和一次函數的解析式;(2)拋物線上的動點在一次函數的圖象下方,求面積的最大值,并求出此時點E的坐標;(3)若點為軸上任意一點,在(2)的結論下,求的最小值.21.(6分)(1)解方程:(2)計算:22.(8分)如圖1,在矩形中,,,是邊上一點,連接,將矩形沿折疊,頂點恰好落在邊上點處,延長交的延長線于點.(1)求線段的長;(2)如圖2,,分別是線段,上的動點(與端點不重合),且.①求證:∽;②是否存在這樣的點,使是等腰三角形?若存在,請求出的長;若不存在,請說明理由.23.(8分)解方程:

24.(8分)解方程:+3x-4=025.(10分)如圖,在△ABC中,AD是角平分錢,點E在AC上,且∠EAD=∠ADE.(1)求證:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的長.26.(10分)我市某校準備成立四個活動小組:.聲樂,.體育,.舞蹈,.書畫,為了解學生對四個活動小組的喜愛情況,隨機選取該校部分學生進行調查,要求每名學生從中必須選擇而且只能選擇一個小組,根據調查結果繪制如下兩幅不完整的統計圖.請結合圖中所給信息,解答下列問題:(1)本次抽樣調查共抽查了名學生,扇形統計圖中的值是;(2)請補全條形統計圖;(3)喜愛“書畫”的學生中有兩名男生和兩名女生表現特別優秀,現從這4人中隨機選取兩人參加比賽,請用列表或畫樹狀圖的方法求出所選的兩人恰好是一名男生和一名女生的概率.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據題意,易證△AEH∽△AFG∽△ABC,利用相似比,可求出S△AEH、S△AFG與S△ABC的面積比,從而表示出S△AEH、S△AFG,再求出四邊形EFGH的面積即可.【詳解】∵在矩形中FG∥EH,且EH∥BC,∴FG∥EH∥BC,∴△AEH∽△AFG∽△ABC,∵AB被截成三等分,∴,,∴S△AEH:S△ABC=1:9,S△AFG:S△ABC=4:9,∴S△AEH=S△ABC,S△AFG=S△ABC,∴S四邊形EFGH=S△AFG-S△AEH=S△ABC-S△ABC=S△ABC.故選:B.【點睛】本題考查相似三角形的判定與性質,明確面積比等于相似比的平方是解題的關鍵.2、C【分析】先分別計算四個點的橫、縱坐標之積,然后根據反比例函數圖象上點的坐標特征進行判斷.【詳解】解:∵﹣3×(﹣2)=6,3×2=6,﹣2×3=﹣6,﹣2×(﹣3)=6,∴點(﹣2,3)在反比例函數y=的圖象上.故選:C.【點睛】此題考查的是判斷在反比例函數圖象上的點,掌握點的橫、縱坐標之積等于反比例函數的比例系數即可判斷該點在反比例函數圖象上是解決此題的關鍵.3、D【分析】根據各象限內點的坐標特征進行判斷即可得.【詳解】因則點位于第四象限故選:D.【點睛】本題考查了平面直角坐標系象限的性質,象限的符號規律:第一象限、第二象限、第三象限、第四象限,熟記象限的性質是解題關鍵.4、C【分析】根據二次函數圖象與幾何變換,將y換成-y,整理后即可得出翻折后的解析式,根據二次函數的性質即可求得結論.【詳解】把二次函數y=﹣(x+1)2﹣3的圖象沿著x軸翻折后得到的拋物線的解析式為﹣y=﹣(x+1)2﹣3,整理得:y=(x+1)2+3,所以,當x=﹣1時,有最小值3,故選:C.【點睛】本題考查了二次函數圖象與幾何變換,求得翻折后拋物線解析式是解題的關鍵.5、D【分析】由銳角三角函數可求∠ABC=60°,由菱形的性質可得AB=BC=4,∠ABD=∠CBD=30°,AC⊥BD,由直角三角形的性質可求BO=OC=2,即可求解.【詳解】解:∵cos∠ABC=,∴∠ABC=60°,∵四邊形ABCD是菱形,∴AB=BC=4,∠ABD=∠CBD=30°,AC⊥BD,∴OC=BC=2,BO=OC=2,∴BD=2BO=4,故選:D【點睛】此題主要考查三角函數的應用,解題的關鍵是熟知菱形的性質及解直角三角形的方法.6、D【解析】根據等可能事件的概率公式,即可求解.【詳解】÷=,答:他看該電視臺早間新聞的概率大約是.故選D.【點睛】本題主要考查等可能事件的概率公式,掌握概率公式,是解題的關鍵.7、A【分析】先利用圓周角定理得到∠ACB=90°,則可判斷△ACB為等腰直角三角形,接著判斷△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根據扇形的面積公式計算圖中陰影部分的面積.【詳解】∵AB為直徑,∴∠ACB=90°,∵AC=BC=,∴△ACB為等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S陰影部分=S扇形AOC=.故選A.【點睛】本題考查了扇形面積的計算:圓面積公式:S=πr2,(2)扇形:由組成圓心角的兩條半徑和圓心角所對的弧所圍成的圖形叫做扇形.求陰影面積常用的方法:①直接用公式法;②和差法;③割補法.求陰影面積的主要思路是將不規則圖形面積轉化為規則圖形的面積.8、D【解析】試題解析:∵OC⊥AB,OC過圓心O點,在中,由勾股定理得:故選D.點睛:垂直于弦的直徑平分弦并且平分弦所對的兩條弧.9、C【分析】由于已知方程的二次項系數和一次項系數,所以要求方程的另一根,可利用一元二次方程的兩根之和與系數的關系.【詳解】解:設a是方程x1﹣5x+k=0的另一個根,則a+3=1,即a=﹣1.故選:C.【點睛】此題主要考查一元二次方程的根,解題的關鍵是熟知一元二次方程根與系數的關系.10、B【分析】根據位似圖形的面積比得出相似比,然后根據各點的坐標確定其對應點的坐標即可.【詳解】解:∵四邊形OABC與四邊形O′A′B′C′關于點O位似,且四邊形的面積等于四邊形OABC面積的,∴四邊形OABC與四邊形O′A′B′C′的相似比為2:3,∵點A,B,C分別的坐標),∴點A′,B′,C′的坐標分別是(3,0),(6,6),(-3,3)或(-3,0),(-6,-6),(3,-3).

故選:B.【點睛】本題考查了位似變換及坐標與圖形的知識,解題的關鍵是根據兩圖形的面積的比確定其位似比,注意有兩種情況.二、填空題(每小題3分,共24分)11、2【分析】利用網格特征,將∠AOB放到Rt△AOD中,根據正切函數的定理即可求出tan∠AOB的值.【詳解】如圖,將∠AOB放到Rt△AOD中,∵AD=2,OD=1∴tan∠AOB=故答案為:2.【點睛】本題考查在網格圖中求正切值,利用網格的特征將將∠AOB放到直角三角形中是解題的關鍵.12、或【分析】根據旋轉后的對應關系分類討論,分別畫出對應的圖形,作出對應點連線的垂直平分線即可找到旋轉中心,最后根據點A的坐標即可求結論.【詳解】解:①若旋轉后點A的對應點是點C,點B的對稱點是點D,連接AC和BD,分別作AC和BD的垂直平分線,兩個垂直平分線交于點O,根據垂直平分線的性質可得OA=OC,OB=OD,故點O即為所求,∵,∴由圖可知:點O的坐標為(5,2);②若旋轉后點A的對應點是點D,點B的對稱點是點C,連接AD和BC,分別作AD和BC的垂直平分線,兩個垂直平分線交于點O,根據垂直平分線的性質可得OA=OD,OB=OC,故點O即為所求,∵,∴由圖可知:點O的坐標為綜上:這個旋轉中心的坐標為或故答案為:或.【點睛】此題考查的是根據旋轉圖形找旋轉中心,掌握垂直平分線的性質及作法是解決此題的關鍵.13、【分析】過點A作AE⊥AO,并使∠AEO=∠ABC,先證明,由三角函數可得出,進而求得,再通過證明,可得出,根據三角形三邊關系可得:,由勾股定理可得,求出BE的最大值,則答案即可求出.【詳解】解:過點A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根據三角形三邊關系可得:,∵,∴,∴BE的最大值為:,∴OC的最大值為:.【點睛】本題主要考查了三角形相似的判定和性質、三角函數、勾股定理及三角形三邊關系,解題的關鍵是構造直角三角形.14、4【分析】由=可得,代入計算即可.【詳解】解:∵=,∴,則故答案為:4.【點睛】此題考查了整式的加減-化簡求值,熟練掌握運算法則是解本題的關鍵.15、1【解析】過點A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,則AB=AD=1.【詳解】如圖,過點A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即該船航行的距離(即AB的長)為1.故答案為1.【點睛】本題考查了解直角三角形的應用-方向角問題,難度適中,作出輔助線構造直角三角形是解題的關鍵.16、1.【解析】試題分析:∵點A、B是雙曲線上的點,∴S矩形ACOG=S矩形BEOF=6,∵S陰影DGOF=2,∴S矩形ACDF+S矩形BDGE=6+6﹣2﹣2=1,故答案為1.考點:反比例函數系數k的幾何意義.17、【分析】根據菱形面積=對角線積的一半可求,再根據勾股定理求出,然后由菱形的面積即可得出結果.【詳解】∵四邊形是菱形,∴,,∴,∵,∴,∴,∴,∵,∴;故答案為.【點睛】本題考查了菱形的性質、勾股定理以及菱形面積公式.熟練掌握菱形的性質,由勾股定理求出是解題的關鍵.18、【分析】如圖,過點D作DF⊥BC于F,由“SAS”可證△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性質和勾股定理可求BD的長,由銳角三角函數可求BP的長,由相似三角形的性質可求AE的長,即可求解.【詳解】如圖,過點D作DF⊥BC于F,∵△ABC,△PQC是等邊三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF÷tan30°=CF=2,∴BF=4,∴BD===2,∵△CPQ是等邊三角形,∴S△CPQ=CP2,∴當CP⊥BD時,△CPQ面積最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ?AE=.故答案為;.【點睛】本題考查了全等三角形的判定和性質,等邊三角形的性質,銳角三角函數,相似三角形的判定和性質,直角三角形的性質,勾股定理等知識,求出BP的長是本題的關鍵.三、解答題(共66分)19、(1),;(2),.【分析】(1)把原方程化成一元二次方程的一般形式,利用公式法解方程即可;(2)按照平方差公式展開、合并,再利用十字相乘法解方程即可.【詳解】(1)整理得:,∵,∴,∴,∴,.(2)整理得:,∴,∴x+4=0或x-2=0,解得:,.【點睛】本題考查解一元二次方程,一元二次方程的常用解法有:直接開平方法、配方法、公式法、因式分解法等,熟練掌握并靈活運用適當的方法是解題關鍵.20、(1);;(2)的面積最大值是,此時點坐標為;(2)的最小值是2.【分析】(1)先寫出平移后的拋物線解析式,再把點代入可求得的值,由的面積為1可求出點的縱坐標,代入拋物線解析式可求出橫坐標,由、的坐標可利用待定系數法求出一次函數解析式;(2)作軸交于,如圖,利用三角形面積公式,由構建關于E點橫坐標的二次函數,然后利用二次函數的性質即可解決問題;(2)作關于軸的對稱點,過點作于點,交軸于點,則,利用銳角三角函數的定義可得出,此時最小,求出最小值即可.【詳解】解:(1)將二次函數的圖象向右平移1個單位,再向下平移2個單位,得到的拋物線解析式為,∵,∴點的坐標為,代入拋物線的解析式得,,∴,∴拋物線的解析式為,即.令,解得,,∴,∴,∵的面積為1,∴,∴,代入拋物線解析式得,,解得,,∴,設直線的解析式為,∴,解得:,∴直線的解析式為.(2)過點作軸交于,如圖,設,則,∴,∴,,∴當時,的面積有最大值,最大值是,此時點坐標為.(2)作關于軸的對稱點,連接交軸于點,過點作于點,交軸于點,∵,,∴,,∴,∵,∴,∴,∵、關于軸對稱,∴,∴,此時最小,∵,,∴,∴.∴的最小值是2.【點睛】主要考查了二次函數的平移和待定系數法求函數的解析式、二次函數的性質、相似三角形的判定與性質、銳角三角函數的有關計算和利用對稱的性質求最值問題.解(1)題的關鍵是熟練掌握待定系數法和相關點的坐標的求解;解(2)題的關鍵是靈活應用二次函數的性質求解;解(2)題的關鍵是作關于軸的對稱點,靈活應用對稱的性質和銳角三角函數的知識,學會利用數形結合的思想和轉化的數學思想把求的最小值轉化為求的長度.21、(1);(2)-1【分析】(1)方程因式分解后即可求出解;(2)原式利用特殊角的三角函數值計算,即可得到結果.【詳解】(1),,;(2)=1-2=-1【點睛】本題考查學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.22、(1)2;(2)①見解析;②存在.由①得△DMN∽△DGM,理由見解析【分析】(1)根據矩形的性質和折疊的性質得出AD=AF、DE=EF,進而設EC=x,則DE=EF=8﹣x,利用勾股定理求解即可得出答案;(2)①根據平行線的性質得出△DAE∽△CGE求得CG=6,進而根據勾股定理求出DG=1,得出AD=DG,即可得出答案;②假設存在,由①可得當△DGM是等腰三角形時△DMN是等腰三角形,分兩種情況進行討論:當MG=DG=1時,結合勾股定理進行求解;當MG=DM時,作MH⊥DG于H,證出△GHM∽△GBA,即可得出答案.【詳解】解:(1)如圖1中,∵四邊形ABCD是矩形,∴AD=BC=1,AB=CD=8,∠B=∠BCD=∠D=90°,由翻折可知:AD=AF=1.DE=EF,設EC=x,則DE=EF=8﹣x.在Rt△ABF中,BF==6,∴CF=BC﹣BF=1﹣6=4,在Rt△EFC中,則有:(8﹣x)2=x2+42,∴x=2,∴EC=2.(2)①如圖2中,∵AD∥CG,∴∠DAE=∠CGE,∠ADE=∠GCE∴△DAE∽△CGE∴=,∴,∴CG=6,∴在Rt△DCG中,,∴AD=DG∴∠DAG=∠AGD,∵∠DMN=∠DAM∴∠DMN=∠DGM∵∠MDN=∠GDM∴△DMN∽△DGM②存在.由①得△DMN∽△DGM∴當△DGM是等腰三角形時△DMN是等腰三角形有兩種情形:如圖2﹣1中,當MG=DG=1時,∵BG=BC+CG=16,∴在Rt△ABG中,,∴AM=AG-MG=.如圖2﹣2中,當MG=DM時,作MH⊥DG于H.∴DH=GH=5,由①得∠DGM=∠DAG=∠AGB∵∠MHG=∠B∴△GHM∽△GBA∴,∴,∴,∴.綜上所述,AM的長為或.【點睛】本題考查的是矩形綜合,難度偏高,需要熟練掌握矩形的性質、勾股定理和相似三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論