安徽省合肥45中學2025屆數學九上期末監測模擬試題含解析_第1頁
安徽省合肥45中學2025屆數學九上期末監測模擬試題含解析_第2頁
安徽省合肥45中學2025屆數學九上期末監測模擬試題含解析_第3頁
安徽省合肥45中學2025屆數學九上期末監測模擬試題含解析_第4頁
安徽省合肥45中學2025屆數學九上期末監測模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省合肥45中學2025屆數學九上期末監測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題3分,共30分)1.下列四種圖案中,不是中心對稱圖形的為()A. B. C. D.2.如圖,路燈距離地面8米,若身高1.6米的小明在距離路燈的底部(點O)20米的A處,則小明的影子AM的長為()A.1.25米 B.5米 C.6米 D.4米3.在數軸上,點A所表示的實數為3,點B所表示的實數為a,⊙A的半徑為2,下列說法中不正確的是()A.當1<a<5時,點B在⊙A內B.當a<5時,點B在⊙A內C.當a<1時,點B在⊙A外D.當a>5時,點B在⊙A外4.已知關于x的函數y=x2+2mx+1,若x>1時,y隨x的增大而增大,則m的取值范圍是()A.m≥1 B.m≤1 C.m≥-1 D.m≤-15.如圖,中,,若,,則邊的長是()A.2 B.4 C.6 D.86.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點M是AB上的一點,點N是CB上的一點,,當∠CAN與△CMB中的一個角相等時,則BM的值為()A.3或4 B.或4 C.或6 D.4或67.如圖,小明夜晚從路燈下A處走到B處這一過程中,他在路上的影子()A.逐漸變長 B.逐漸變短C.長度不變 D.先變短后變長8.如圖,在中,,,于點.則與的周長之比為()A.1:2 B.1:3 C.1:4 D.1:59.方程x2=2x的解是()A.2 B.0 C.2或0 D.﹣2或010.如圖,在四邊形中,對角線,相交于點,且,.若要使四邊形為菱形,則可以添加的條件是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在正方形鐵皮上剪下一個扇形和一個半徑為的圓形,使之恰好圍成一個圓錐,則圓錐的高為____.12.設m,n分別為一元二次方程x2+2x-2021=0的兩個實數根,則m2+3m+n=______.13.將一副三角尺如圖所示疊放在一起,則的值是.14.一個扇形的圓心角為120°,半徑為3,則這個扇形的面積為(結果保留π)15.(2011?南充)如圖,PA,PB是⊙O是切線,A,B為切點,AC是⊙O的直徑,若∠BAC=25°,則∠P=_________度.16.二次函數的圖象與軸交于兩點(點在點的左側),與軸交于點,作直線,將直線下方的二次函數圖象沿直線向上翻折,與其它剩余部分組成一個組合圖象,若線段與組合圖象有兩個交點,則的取值范圍為_____.17.若是方程的根,則的值為__________.18.一元二次方程的解是.三、解答題(共66分)19.(10分)對于平面直角坐標系中的兩個圖形K1和K2,給出如下定義:點G為圖形K1上任意一點,點H為K2圖形上任意一點,如果G,H兩點間的距離有最小值,則稱這個最小值為圖形K1和K2的“近距離”。如圖1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),邊長為的正方形PQMN,對角線NQ平行于x軸或落在x軸上.(1)填空:①原點O與線段BC的“近距離”為;②如圖1,正方形PQMN在△ABC內,中心O’坐標為(m,0),若正方形PQMN與△ABC的邊界的“近距離”為1,則m的取值范圍為;(2)已知拋物線C:,且-1≤x≤9,若拋物線C與△ABC的“近距離”為1,求a的值;(3)如圖2,已知點D為線段AB上一點,且D(5,-2),將△ABC繞點A順時針旋轉α(0o<α≤180o),將旋轉中的△ABC記為△AB’C’,連接DB’,點E為DB’的中點,當正方形PQMN中心O’坐標為(5,-6),直接寫出在整個旋轉過程中點E運動形成的圖形與正方形PQMN的“近距離”.20.(6分)如圖,C是直徑AB延長線上的一點,CD為⊙O的切線,若∠C=20°,求∠A的度數.21.(6分)在校園文化藝術節中,九年級一班有1名男生和2名女生獲得美術獎,另有1名男生和1名女生獲得音樂獎.(1)從獲得美術獎和音樂獎的5名學生中選取1名參加頒獎大會,剛好是男生的概率是;(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.22.(8分)在平面直角坐標系中的兩個圖形與,給出如下定義:為圖形上任意一點,為圖形上任意一點,如果兩點間的距離有最小值,那么稱這個最小值為圖形間的“和睦距離”,記作,若圖形有公共點,則.(1)如圖(1),,,⊙的半徑為2,則,;(2)如圖(2),已知的一邊在軸上,在上,且,,.①是內一點,若、分別且⊙于E、F,且,判斷與⊙的位置關系,并求出點的坐標;②若以為半徑,①中的為圓心的⊙,有,,直接寫出的取值范圍.23.(8分)若拋物線y=ax2+bx﹣3的對稱軸為直線x=1,且該拋物線經過點(3,0).(1)求該拋物線對應的函數表達式.(2)當﹣2≤x≤2時,則函數值y的取值范圍為.(3)若方程ax2+bx﹣3=n有實數根,則n的取值范圍為.24.(8分)解方程:

25.(10分)如圖,是的直徑,是的弦,延長到點,使,連結,過點作,垂足為.(1)求證:;(2)求證:為的切線.26.(10分)某校九年級(1)班甲、乙兩名同學在5次引體向上測試中的有效次數如下:甲:8,8,7,8,1.乙:5,1,7,10,1.甲、乙兩同學引體向上的平均數、眾數、中位數、方差如下:平均數眾數中位數方差甲880.4乙13.2根據以上信息,回答下列問題:(1)表格中_______,_______,_______.(填數值)(2)體育老師根據這5次的成績,決定選擇甲同學代表班級參加年級引體向上比賽,選擇甲的理由是_______________________________________.班主任李老師根據去年比賽的成績(至少1次才能獲獎),決定選擇乙同學代表班級參加年級引體向上比賽,選擇乙的理由是_______________________________________.(3)乙同學再做一次引體向上,次數為n,若乙同學6次引體向上成績的中位數不變,請寫出n的最小值.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據中心對稱圖形的定義逐個判斷即可.【詳解】解:A、是中心對稱圖形,故本選項不符合題意;

B、是中心對稱圖形,故本選項不符合題意;

C、是中心對稱圖形,故本選項符合題意;

D、不是中心對稱圖形,故本選項符合題意;故選D.【點睛】本題考查了對中心對稱圖形的定義,判斷中心對稱圖形的關鍵是旋轉180°后能夠重合.能熟知中心對稱圖形的定義是解此題的關鍵.2、B【分析】易得:△ABM∽△OCM,利用相似三角形對應邊成比例可得出小明的影子AM的長.【詳解】如圖,根據題意,易得△MBA∽△MCO,

根據相似三角形的性質可知,即,

解得AM=5m.

則小明的影子AM的長為5米.

故選:B.【點睛】此題考查相似三角形的應用,利用相似三角形對應邊成比例列出比例式是解題的關鍵.3、B【解析】試題解析:由于圓心A在數軸上的坐標為3,圓的半徑為2,∴當d=r時,⊙A與數軸交于兩點:1、5,故當a=1、5時點B在⊙A上;當d<r即當1<a<5時,點B在⊙A內;當d>r即當a<1或a>5時,點B在⊙A外.由以上結論可知選項A、C、D正確,選項B錯誤.故選B.點睛:若用d、r分別表示點到圓心的距離和圓的半徑,則當d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.4、C【解析】根據函數解析式可知,開口方向向上,在對稱軸的右側y隨x的增大而增大,在對稱軸的左側,y隨x的增大而減小.【詳解】解:∵函數的對稱軸為x=,又∵二次函數開口向上,∴在對稱軸的右側y隨x的增大而增大,∵x>1時,y隨x的增大而增大,∴-m≤1,即m≥-1故選:C.【點睛】本題考查了二次函數的圖形與系數的關系,熟練掌握二次函數的性質是解題的關鍵.5、C【分析】由,∠A=∠A,得?ABD~?ACB,進而得,求出AC的值,即可求解.【詳解】∵,∠A=∠A,∴?ABD~?ACB,∴,即:,∴AC=8,∴CD=AC-AD=8-2=6,故選C.【點睛】本題主要考查相似三角形的判定和性質定理,掌握相似三角形的判定定理,是解題的關鍵.6、D【分析】分兩種情形:當時,,設,,可得,解出值即可;當時,過點作,可得,得出,,則,證明,得出方程求解即可.【詳解】解:在Rt△ABC中,∠ACB=90°,AC=1,BC=8,∴,AB=10,,設,,①當時,可得,,,,.②當時,如圖2中,過點作,可得,,,,,,,,,,,,.綜上所述,或1.故選:D.【點睛】本題考相似三角形的判定和性質,解題的關鍵是學會用分類討論的思想思考問題,學會添加常用輔助線,構造相似三角形解決問題.7、A【分析】因為人和路燈間的位置發生了變化,光線與地面的夾角發生變化,所以影子的長度也會發生變化,進而得出答案.【詳解】當他遠離路燈走向B處時,光線與地面的夾角越來越小,小明在地面上留下的影子越來越長,所以他在走過一盞路燈的過程中,其影子的長度逐漸變長,故選:A.【點睛】此題考查了中心投影的性質,解題關鍵是了解人從路燈下走過的過程中,人與燈之間位置變化,光線與地面的夾角發生變化,從而導致影子的長度發生變化.8、A【詳解】∵∠B=∠B,∠BDC=∠BCA=90°,∴△BCD∽△BAC;①∴∠BCD=∠A=30°;Rt△BCD中,∠BCD=30°,則BC=2BD;由①得:C△BCD:C△BAC=BD:BC=1:2;故選A9、C【分析】利用因式分解法求解可得.【詳解】解:∵x2=2x,∴x2﹣2x=0,則x(x﹣2)=0,∴x=0或x﹣2=0,解得:x1=0,x2=2,故選:C.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.10、D【分析】根據對角線互相平分的四邊形是平行四邊形可得四邊形是平行四邊形,再根據菱形的判定定理和矩形的判定定理逐一分析即可.【詳解】解:∵在四邊形中,,∴四邊形是平行四邊形若添加,則四邊形是矩形,故A不符合題意;若添加,則四邊形是矩形,故B不符合題意;若添加,與菱形的對角線互相垂直相矛盾,故C不符合題意;若添加則四邊形是菱形,故D符合題意.故選D.【點睛】此題考查的是平行四邊形的判定、矩形的判定和菱形的判定,掌握平行四邊形的判定定理、矩形的判定定理和菱形的判定定理是解決此題的關鍵.二、填空題(每小題3分,共24分)11、【分析】利用已知得出底面圓的半徑為,周長為,進而得出母線長,再利用勾股定理進行計算即可得出答案.【詳解】解:∵半徑為的圓形∴底面圓的半徑為∴底面圓的周長為∴扇形的弧長為∴,即圓錐的母線長為∴圓錐的高為.故答案是:【點睛】此題主要考查了圓錐展開圖與原圖對應情況,以及勾股定理等知識,根據已知得出母線長是解決問題的關鍵.12、1.【分析】根據一元二次方程的解結合根與系數的關系即可得出m2+2m=2021、m+n=-2,將其代入m2+3m+n中即可求出結論.【詳解】∵m,n分別為一元二次方程x2+2x-2018=0的兩個實數根,∴m2+2m=2021,m+n=-2,∴m2+3m+n=m2+2m+(m+n)=1+(-2)=1.故答案為1.【點睛】本題考查了根與系數的關系以及一元二次方程的解,根據一元二次方程的解結合根與系數的關系即可得出m2+2m=1、m+n=-2是解題的關鍵.13、【解析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.14、3π【解析】試題分析:此題考查扇形面積的計算,熟記扇形面積公式,即可求解.根據扇形面積公式,計算這個扇形的面積為.考點:扇形面積的計算15、50【解析】∵PA,PB是⊙O是切線,A,B為切點,∴PA=PB,∠OBP=90°,∵OA=OB,∴∠OBA=∠BAC=25°,∴∠ABP=90°﹣25°=65°,∵PA=PB,∴∠BAP=∠ABP=65°,∴∠P=180°﹣65°﹣65°=50°,故答案為:50°.16、或【解析】畫出圖形,采用數形結合,分類討論討論,分直線y=t在x軸上方和下方兩種情況,需要注意的是,原拋物線與線段BC本來就有B、C兩個交點.具體過程見詳解.【詳解】解:分類討論(一):原拋物線與線段BC就有兩個交點B、C.當拋物線在x軸下方部分,以x軸為對稱軸向上翻折后,就會又多一個交點,所以要滿足只有兩個交點,直線y=t需向上平移,點B不再是交點,交點只有點C和點B、C之間的一個點,所以t>0;當以直線y=3為對稱軸向上翻折時,線段與組合圖象就只有點C一個交點了,不符合題意,所以t<3,故;(二)∵=(x-2)2-1,∴拋物線沿翻折后的部分是拋物線)2+k在直線y=t的上方部分,當直線BC:y=-x+3與拋物線只有一個交點時,即的△=0,解得k=,此時線段BC與組合圖象W的交點,既有C、B,又多一個,共三個,不符合題意,所以翻折部分需向下平移,即直線y=t向下平移,k=時,拋物線)2+的頂點坐標為(2,),與的頂點(2,-1)的中點是(2,-),所以t<-,又因為,所以.綜上所述:t的取值范圍是:或故答案為或.【點睛】本題考查拋物線的翻折和上下平移、拋物線和線段的交點問題.解題關鍵是熟練掌握二次函數的圖像和性質.17、1【分析】根據一元二次方程的解的定義即可求出答案.【詳解】由題意可知:2m2?3m+1=0,∴2m2?3m=-1∴原式=-3(2m2?3m)+2019=1.故答案為:1.【點睛】本題考查一元二次方程的解,解題的關鍵是正確理解一元二次方程的解的定義,本題屬于基礎題型.18、±1.【解析】試題分析:∵x1-4=0∴x=±1.考點:解一元二次方程-直接開平方法.三、解答題(共66分)19、(1)①2;②;(2)或;(3)點E運動形成的圖形與正方形PQMN的“近距離”為.【分析】(1)①由垂線段最短,即可得到答案;②根據題意,找出正方形PQMN與△ABC的邊界的“近距離”為1,的臨界點,然后分別求出m的最小值和最大值,即可得到m的取值范圍;(2)根據題意,拋物線與△ABC的“近距離”為1時,可分為兩種情況:當點C到拋物線的距離為1,即CD=1;當拋物線與線段AB的距離為1時,即GH=1;分別求出a的值,即可得到答案;(3)根據題意,取AB的中點F,連接EF,求出EF的長度,然后根據題意,求出點F,點Q的坐標,求出FQ的長度,即可得到EQ的長度,即可得到答案.【詳解】解:(1)①∵B(9,2),C(,2),∴點B、C的縱坐標相同,∴線段BC∥x軸,∴原點O到線段BC的最短距離為2;即原點O與線段BC的“近距離”為2;故答案為:2;②∵A(-1,-8),B(9,2),C(-1,2),∴線段BC∥x軸,線段AC∥y軸,∴AC=BC=10,△ABC是等腰直角三角形,當點N與點O重合時,點N與線段AC的最短距離為1,則正方形PQMN與△ABC的邊界的“近距離”為1,此時m為最小值,∵正方形的邊長為,由勾股定理,得:,∴,(舍去);當點Q到線段AB的距離為1時,此時m為最大值,如圖:∵QN=1,△QMN是等腰直角三角形,∴QM=,∵BD=9,△BDE是等腰直角三角形,∴DE=9,∵△OEM是等腰直角三角形,∴OE=OM=7,∴m的最大值為:,∴m的取值范圍為:;故答案為:;(2)拋物線C:,且,若拋物線C與△ABC的“近距離”為1,由題可知,點C與拋物線的距離為1時,如圖:∵點C的坐標為(,2),∴但D的坐標為(,3),把點D代入中,有,解得:;當線段AB與拋物線的距離為1時,近距離為1,如圖:即GH=1,點H在拋物線上,過點H作AB的平行線,線段AB與y軸相交于點F,作FE⊥EH,垂足為E,∴EF=GH=1,∵∠FDE=∠A=45°,∴,∵點A(-1,-8),B(9,2),設直線AB為,∴,解得:,∴直線AB的解析式為:,∴直線EH的解析式為:;∴聯合與,得,整理得:,∵直線EH與拋物線有一個交點,∴,解得:;綜合上述,a的值為:或;(3)由題意,取AB的中點F,連接EF,如圖:∵點A(-1,-8),B(9,2),∴,在中,F是AD的中點,點E是的中點,∴,∵點D的坐標為(5,-2),A(-1,-8),∴點F的坐標為(2,),∵在正方形PNMQ中,中心點的坐標為(5,),∴點Q的坐標為(6,),∴,∴;∴點E運動形成的圖形與正方形PQMN的“近距離”為.【點睛】本題考查了圖形的運動問題和最短路徑問題,考查了二次函數的性質,正方形的性質,等腰直角三角形的性質,一次函數的平移,勾股定理,旋轉的性質,根的判別式等知識,解題的關鍵是熟練掌握所學的知識,正確作出輔助線,作出臨界點的圖形,從而進行分析.注意運用數形結合的思想和分類討論的思想進行解題.難度很大,是中考壓軸題.20、35°【分析】連接OD,根據切線的性質得∠ODC=90°,根據圓周角定理即可求得答案.【詳解】連接OD,∵CD為⊙O的切線,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圓周角定理得,∠A=∠DOC=35°.【點睛】本題考查了切線的性質和圓周角定理,有圓的切線時,常作過切點的半徑.21、(1);(2)【分析】(1)直接根據概率公式求解;(2)畫樹狀圖展示所有6種等可能的結果數,再找出剛好是一男生一女生的結果數,然后根據概率公式求解.【詳解】解:(1)從獲得美術獎和音樂獎的5名學生中選取1名參加頒獎大會,剛好是男生的概率是;故答案為:;(2)畫樹狀圖為:共有6種等可能的結果數,其中剛好是一男生一女生的結果數為3,概率所以剛好是一男生一女生的概率為.【點睛】本題考查了概率問題,掌握概率公式以及樹狀圖的畫法是解題的關鍵.22、(1)2,;(2)①是⊙的切線,;②或.【分析】(1)根據圖形M,N間的“和睦距離”的定義結合已知條件求解即可.(2)①連接DF,DE,作DH⊥AB于H.設OC=x.首先證明∠CBO=30,再證明DH=DE即可證明是⊙的切線,再求出OE,DE的長即可求出點D的坐標.②根據,得到不等式組解決問題即可.【詳解】(1)∵A(0,1),C(3,4),⊙C的半徑為2,∴d(C,⊙C)=2,d(O,⊙C)=AC?2=,故答案為2;;(2)①連接,作于.設.∵,∴,解得,∴,∴,,∵是⊙的切線,∴平分,∴,∴,∵,∴,∴,∴是⊙的切線.∵,設,∵,∴,∴,,∴,∴,②∵∴B(0,)∴BD=由,,得解得或故答案為:或.【點睛】本題屬于圓綜合題,考查了圖形M,N間的“和睦距離”,解直角三角形的應用,切線的判定和性質,不等式組等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考壓軸題.23、(1)y=x2﹣2x﹣3;(2)﹣1≤y≤5;(3)n≥﹣1.【分析】(1)由對稱軸x=1可得b=-2a,再將點(3,0)代入拋物線解析式得到9a+3b-3=0,然后列二元一次方程組求出a、b即可;(2)用配方法可得到y=(x﹣1)2﹣1,則當x=1時,y有最小值-1,而當x=-2時,y=5,即可完成解答;(3)利用直線y=n與拋物線y=(x﹣1)2﹣1有交點的坐標就是方程ax2+bx-3=n有實數解,再根據根的判別式列不式、解不等式即可.【詳解】解:(1)∵拋物線的對稱軸為直線x=1,∴﹣=1,即b=﹣2a,∵拋物線經過點(3,0).∴9a+3b﹣3=0,把b=﹣2a代入得9a﹣6a﹣3=0,解得a=1,∴b=﹣2,∴拋物線解析式為y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣1,∴x=1時,y有最小值﹣1,當x=﹣2時,y=1+1﹣3=5,∴當﹣2≤x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論