2025屆安徽省銅陵義安區六校聯考數學九上期末檢測模擬試題含解析_第1頁
2025屆安徽省銅陵義安區六校聯考數學九上期末檢測模擬試題含解析_第2頁
2025屆安徽省銅陵義安區六校聯考數學九上期末檢測模擬試題含解析_第3頁
2025屆安徽省銅陵義安區六校聯考數學九上期末檢測模擬試題含解析_第4頁
2025屆安徽省銅陵義安區六校聯考數學九上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省銅陵義安區六校聯考數學九上期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.菱形具有而矩形不具有的性質是()A.對邊相等 B.對角相等 C.對角線互相平分 D.對角線互相垂直2.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A.等邊三角形 B.平行四邊形 C.矩形 D.正五邊形3.如圖,周長為定值的平行四邊形中,,設的長為,周長為16,平行四邊形的面積為,與的函數關系的圖象大致如圖所示,當時,的值為()A.1或7 B.2或6 C.3或5 D.44.邊長為2的正六邊形的面積為()A.6 B.6 C.6 D.5.如圖,將n個邊長都為2的正方形按如圖所示擺放,點A1、A2、A3,…,An分別是正方形的中心,則這n個正方形重疊的面積之和是()A.n B.n-1C.4n D.4(n-1)6.若,則的值是()A.1 B.2 C.3 D.47.如圖,在Rt△ABC中,∠C=Rt∠,則cosA可表示為(

)A. B. C. D.8.方程x2+4x+4=0的根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.有一個實數根 D.沒有實數根9.如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k的值是()A. B. C. D.1210.如圖,矩形的對角線交于點,已知,,下列結論錯誤的是()A. B. C. D.二、填空題(每小題3分,共24分)11.關于x的分式方程有增根,則m的值為__________.12.如圖,⊙O經過A,B,C三點,PA,PB分別與⊙O相切于A,B點,∠P=46°,則∠C=_____.13.如圖,利用標桿測量建筑物的高度,已知標桿高1.2,測得,則建筑物的高是__________.14.若點是雙曲線上的點,則__________(填“>”,“<”或“=”)15.如圖,四邊形ABCD內接于⊙O,AD∥BC,直線EF是⊙O的切線,B是切點.若∠C=80°,∠ADB=54°,則∠CBF=____°.16.如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8,E是AC上一點,AE=5,ED⊥AB,垂足為D,求AD的長17.若是關于的一元二次方程,則________.18.閱讀對話,解答問題:分別用、表示小冬從小麗、小兵袋子中抽出的卡片上標有的數字,則在(,)的所有取值中使關于的一元二次方程有實數根的概率為_________.三、解答題(共66分)19.(10分)如圖,已知⊙O的半徑長為R=5,弦AB與弦CD平行,它們之間距離為5,AB=6,求弦CD的長.20.(6分)“2020比佛利”無錫馬拉松賽將于3月22日鳴槍開跑,本次比賽設三個項目:A.全程馬拉松;B.半程馬拉松;C.迷你馬拉松.小明和小紅都報名參與該賽事的志愿者服務工作,若兩人都已被選中,屆時組委會隨機將他們分配到三個項目組.(1)小明被分配到“迷你馬拉松”項目組的概率為;(2)請利用樹狀圖或列表法求兩人被分配到同一個項目組的概率.21.(6分)如圖,在中,弦垂直于直徑,垂足為,連結,將沿翻轉得到,直線與直線相交于點.(1)求證:是的切線;(2)若為的中點,①求證:四邊形是菱形;②若,求的半徑長.22.(8分)已知關于的方程有實數根.(1)求的取值范圍;(2)若該方程有兩個實數根,分別為和,當時,求的值.23.(8分)請回答下列問題.(1)計算:(2)解方程:24.(8分)如圖,二次函數y=x2+bx+c的圖象與x軸相交于點A、B兩點,與y軸相交于點C(0,﹣3),拋物線的對稱軸為直線x=1.(1)求此二次函數的解析式;(2)若拋物線的頂點為D,點E在拋物線上,且與點C關于拋物線的對稱軸對稱,直線AE交對稱軸于點F,試判斷四邊形CDEF的形狀,并證明你的結論.25.(10分)如圖(1),矩形中,,,點,分別在邊,上,點,分別在邊,上,,交于點,記.(1)如圖(2)若的值為1,當時,求的值.(2)若的值為3,當點是矩形的頂點,,時,求的值.26.(10分)如圖,BM是以AB為直徑的⊙O的切線,B為切點,BC平分∠ABM,弦CD交AB于點E,DE=OE.(1)求證:△ACB是等腰直角三角形;(2)求證:OA2=OE?DC:(3)求tan∠ACD的值.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據菱形和矩形都是平行四邊形,都具備平行四邊形性質,再結合菱形及矩形的性質,對各選項進行判斷即可.【詳解】解:因為菱形和矩形都是平行四邊形,都具備平行四邊形性質,即對邊平行而且相等,對角相等,對角線互相平分.、對邊平行且相等是菱形矩形都具有的性質,故此選項錯誤;、對角相等是菱形矩形都具有的性質,故此選項錯誤;、對角線互相平分是菱形矩形都具有的性質,故此選項錯誤;、對角線互相垂直是菱形具有而矩形不具有的性質,故此選項正確;故選:D.【點睛】本題考查了平行四邊形、矩形及菱形的性質,屬于基礎知識考查題,同學們需要掌握常見幾種特殊圖形的性質及特點.2、C【解析】分析:根據軸對稱圖形與中心對稱圖形的概念求解.詳解:A、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故錯誤;B、不是軸對稱圖形,因為找不到任何這樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義.是中心對稱圖形.故錯誤;C、是軸對稱圖形,又是中心對稱圖形.故正確;D、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉180度后它的兩部分能夠重合;即不滿足中心對稱圖形的定義.故錯誤.故選C.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,根據定義得出圖形形狀是解決問題的關鍵.3、B【分析】過點A作AE⊥BC于點E,構建直角△ABE,通過解該直角三角形求得AE的長度,然后利用平行四邊形的面積公式列出函數關系式,即可求解.【詳解】如圖,過點A作AE⊥BC于點E,∵∠B=60°,邊AB的長為x,∴AE=AB?sin60°=∵平行四邊形ABCD的周長為16,∴BC=(16?2x)=8?x,∴y=BC?AE=(8?x)×(0≤x≤8).當時,(8?x)×=解得x1=2,x2=6故選B.【點睛】考查了動點問題的函數圖象.掌握平行四邊形的周長公式和解直角三角形求得AD、BE的長度是解題的關鍵.4、A【解析】首先根據題意作出圖形,然后可得△OBC是等邊三角形,然后由三角函數的性質,求得OH的長,繼而求得正六邊形的面積.【詳解】解:如圖,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,∴∠BOC=×360°=60°,∵OB=0C,∴△OBC是等邊三角形,∴BC=OB=OC=2,∴它的半徑為2,邊長為2;∵在Rt△OBH中,OH=OB?sin60°=2×,∴邊心距是:;∴S正六邊形ABCDEF=6S△OBC=6××2×=6.故選:A.【點睛】本題考查圓的內接正六邊形的性質、正多邊形的內角和、等邊三角形的判定與性質以及三角函數等知識.此題難度不大,注意掌握數形結合思想的應用.5、B【分析】根據題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:如圖示,由分別過點A1、A2、A3,垂直于兩邊的垂線,由圖形的割補可知:一個陰影部分面積等于正方形面積的,即陰影部分的面積是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故選:B.【點睛】此題考查了正方形的性質,解決本題的關鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.6、B【分析】根據比例的性質,可用x表示y、z,根據分式的性質,可得答案.【詳解】設=k,則x=2k,y=7k,z=5k代入原式原式==故答案為:2.【點睛】本題考查了比例的性質,解題的關鍵是利用比例的性質,化簡求值.7、C【解析】解:cosA=,故選C.8、B【分析】判斷上述方程的根的情況,只要看根的判別式△=b2﹣4ac的值的符號就可以了.【詳解】解:∵△=b2﹣4ac=16﹣16=0∴方程有兩個相等的實數根.故選:B.【點睛】本題考查了一元二次方程根的判別式的應用.總結:一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.9、C【分析】設B點的坐標為(a,b),由BD=3AD,得D(,b),根據反比例函數定義求出關鍵點坐標,根據S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【詳解】∵四邊形OCBA是矩形,∴AB=OC,OA=BC,設B點的坐標為(a,b),∵BD=3AD,∴D(,b),∵點D,E在反比例函數的圖象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-?-?-??(b-)=9,∴k=,故選:C【點睛】考核知識點:反比例函數系數k的幾何意義.結合圖形,分析圖形面積關系是關鍵.10、B【分析】根據矩形的性質得對角線相等且互相平分,再結合三角函數的定義,逐個計算即可判斷.【詳解】解:∵四邊形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A選項正確;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B選項錯誤;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C選項正確;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D選項正確.故選:B.【點睛】本題考查矩形的性質及三角函數的定義,掌握三角函數的定義是解答此題的關鍵.二、填空題(每小題3分,共24分)11、1.【解析】去分母得:7x+5(x-1)=2m-1,因為分式方程有增根,所以x-1=0,所以x=1,把x=1代入7x+5(x-1)=2m-1,得:7=2m-1,解得:m=1,故答案為1.12、67°【分析】根據切線的性質定理可得到∠OAP=∠OBP=90°,再根據四邊形的內角和求出∠AOB,然后根據圓周角定理解答.【詳解】解:∵PA,PB分別與⊙O相切于A,B兩點,∴∠OAP=90°,∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣46°=134°,∴∠C=∠AOB=67°,故答案為:67°.【點睛】本題考查了圓的切線的性質、四邊形的內角和和圓周角定理,屬于常見題型,熟練掌握上述知識是解題關鍵.13、10.5【解析】先證△AEB∽△ABC,再利用相似的性質即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點睛】本題考查了相似的判定和性質.利用相似的性質列出含所求邊的比例式是解題的關鍵.14、>【分析】根據得出反比例圖象在每一象限內y隨x的增大而減小,再比較兩點的橫坐標大小,即可比較兩點的縱坐標大小.【詳解】解:∵,,∴反比例函數的圖象在第一、三象限內,且在每一象限內y隨x的增大而減小,∵點是雙曲線上的點,且1<2,∴,故答案為:>.【點睛】本題考查了反比例函數的圖象與性質,掌握k>0時,反比例函數圖象在每一象限內y隨x的增大而減小是解題的關鍵.15、46°【分析】連接OB,OC,根據切線的性質可知∠OBF=90°,根據AD∥BC,可得∠DBC=∠ADB=54°,然后利用三角形內角和求得∠BDC=46°,然后利用同弧所對的圓心角是圓周角的2倍,求得∠BOC=92°,然后利用等腰三角形的性質求得∠OBC的度數,從而使問題得解.【詳解】解:連接OB,OC,∵直線EF是⊙O的切線,B是切點∴∠OBF=90°∵AD∥BC∴∠DBC=∠ADB=54°又∵∠DCB=80°∴∠BDC=180°-∠DBC-∠DCB=46°∴∠BOC=2∠BDC=92°又∵OB=OC∴∠OBC=∴∠CBF=∠OBF-∠OBC=90-44=46°故答案為:46°【點睛】本題考查切線的性質,三角形內角和定理,等腰三角形的性質,根據題意添加輔助線正確推理論證是本題的解題關鍵.16、AD=1【分析】通過證明△ADE∽△ACB,可得,即可求解.【詳解】解:∵∠C=∠ADE=90°,∠A=∠A,∴△ADE∽△ACB,∴∴,∴AD=1.【點睛】本題考查了相似三角形的判定與性質定理,熟練掌握定理是解題的關鍵.17、1【分析】根據一元二次方程的定義,從而列出關于m的關系式,求出答案.【詳解】根據題意可知:m+1≠0且|m|+1=2,解得:m=1,故答案為m=1.【點睛】本題主要考查了一元二次方程的定義,解本題的要點在于知道一元二次方程中二次項系數不能為0.18、.【解析】試題分析:用列表法易得(a,b)所有情況,看使關于x的一元二次方程x3-ax+3b=3有實數根的情況占總情況的多少即可.試題解析:(a,b)對應的表格為:∵方程x3-ax+3b=3有實數根,∴△=a3-8b≥3.∴使a3-8b≥3的(a,b)有(3,3),(4,3),(4,3),∴p(△≥3)=.考點:3.列表法與樹狀圖法;3.根的判別式.三、解答題(共66分)19、【分析】如圖所示作出輔助線,由垂徑定理可得AM=3,由勾股定理可求出OM的值,進而求出ON的值,再由勾股定理求CN的值,最后得出CD的值即可.【詳解】解:如圖所示,因為AB∥CD,所以過點O作MN⊥AB交AB于點M,交CD于點N,連接OA,OC,由垂徑定理可得AM=,∴在Rt△AOM中,,∴ON=MN-OM=1,∴在Rt△CON中,,∴,故答案為:【點睛】本題考查勾股定理及垂徑定理,作出輔助線,構造直角三角形是解題的關鍵.20、(1);(2).【分析】(1)直接利用概率公式計算;(2)先利用畫樹狀圖展示所有9種等可能的結果數,找出兩人被分配到同一個項目組的結果數,然后根據概率公式計算.【詳解】解:(1)小明被分配到“迷你馬拉松”項目組的概率為;(2)畫樹狀圖為:共有9種等可能的結果數,其中兩人被分配到同一個項目組的結果數為3,所以兩人被分配到同一個項目組的概率==.【點睛】此題主要考查概率的求解,解題的關鍵是熟知樹狀圖的畫法.21、(1)見解析;(2)①見解析,②1【分析】(1)連接OC,由OA=OC得∠OAC=∠OCA,結合折疊的性質得∠OCA=∠FAC,于是可判斷OC∥AF,然后根據切線的性質得直線FC與⊙O相切;(2)①連接OD、BD,利用直角三角形斜邊上的中線的性質可證得CB=OC=OD=BD,再根據菱形的判定定理即可判定;②首先證明△OBC是等邊三角形,在Rt△OCE中,根據,構建方程即可解決問題;【詳解】(1)如圖,連接OC,∵OA=OC,∴∠OAC=∠OCA,由翻折的性質,有∠OAC=∠FAC,∠AEC=∠AFC=90°,∴∠FAC=∠OCA,∴∥AF,∴∠OCG=∠AFC=90°,故FG是⊙O的切線;(2)①如圖,連接OD、BD,∵CD垂直于直徑AB,∴OC=OD,BC=BD,又∵B為OG的中點,∴,∴CB=OB,又∵OB=OC,∴CB=OC,則有CB=OC=OD=BD,故四邊形OCBD是菱形;②由①知,△OBC是等邊三角形,∵CD垂直于直徑AB,∴,∴,設⊙O的半徑長為R,在Rt△OCE中,有,即,解之得:,⊙O的半徑長為:1.【點睛】本題屬于圓綜合題,考查了切線的判定,等邊三角形的判定和性質,直角三角形斜邊上的中線的性質,勾股定理等知識,解題的關鍵是學會添加常用輔助線,學會利用方程的思想解決問題.22、(1);(1)1.【分析】(1)根據方程有實數根,可分為k=0與k≠0兩種情況分別進行討論即可得;(2)根據一元二次方程根與系數的關系可得,,由此可得關于k的方程,解方程即可得.【詳解】(1)當時,方程是一元一次方程,有實根符合題意,當時,方程是一元二次方程,由題意得,解得:,綜上,的取值范圍是;(2)和是方程的兩根,,,,,解得,經檢驗:是分式方程的解,且,答:的值為.【點睛】本題考查了方程有實數根的條件,一元二次方程根與系數的關系,正確把握相關知識是解題的關鍵.23、(1)-4;(2),.【分析】(1)先把特殊角的三角函數值代入,再計算乘方,再進行二次根式的運算即可;(2)用公式法解方程即可.【詳解】解:(1)原式===-4;(2)=17∴,,【點睛】本題考查了特殊角的三角函數值及二次根式的混合運算、一元二次方程的解法,牢記特殊角的三角函數值是解題的關鍵.24、(1)y=x2﹣2x﹣3;(2)四邊形EFCD是正方形,見解析【分析】(1)拋物線與y軸相交于點C(0,﹣3),對稱軸為直線x=1知c=﹣3,,據此可得答案;(2)結論四邊形EFCD是正方形.如圖1中,連接CE與DF交于點K.求出E、F、D、C四點坐標,只要證明DF⊥CE,DF=CE,KC=KE,KF=KD即可證明.【詳解】(1)∵拋物線與y軸相交于點C(0,﹣3),對稱軸為直線x=1∴c=﹣3,,即b=﹣2,∴二次函數解析式為;(2)四邊形EFCD是正方形.理由如下:如圖,連接CE與DF交于點K.∵,∴頂點D(1,4),∵C、E關于對稱軸對稱,C(0,﹣3),∴E(2,﹣3),∵A(﹣1,0),設直線AE的解析式為,則,解得:,∴直線AE的解析式為y=﹣x﹣1.∴F(1,﹣2),∴CK=EK=1,FK=DK=1,∴四邊形EFCD是平行四邊形,又∵CE⊥DF,CE=DF,∴四邊形EFCD是正方形.【點睛】本題是二次函數綜合題,主要考查了待定系數法、一次函數的應用、正方形的判定和性質等知識,解題的關鍵是靈活運用待定系數法確定函數解析式.25、(1)1;(2)或【分析】(1)作于,于,設交于點.證明,即可解決問題.(2)連接,.由,,推出,推出,由,推出,,設,則,,,接下來分兩種情形①如圖2中,當點與點重合時,點恰好與重合.②如圖3中,當點與重合,分別求解即可.【詳解】解:(1)如圖,作于,于,設交于點.四邊形是正方形,,,,,,,,,,,,,.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論