2023-2024學年福建省莆田市秀嶼區湖東中學中考數學最后一模試卷含解析_第1頁
2023-2024學年福建省莆田市秀嶼區湖東中學中考數學最后一模試卷含解析_第2頁
2023-2024學年福建省莆田市秀嶼區湖東中學中考數學最后一模試卷含解析_第3頁
2023-2024學年福建省莆田市秀嶼區湖東中學中考數學最后一模試卷含解析_第4頁
2023-2024學年福建省莆田市秀嶼區湖東中學中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福建省莆田市秀嶼區湖東中學中考數學最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是某個幾何體的三視圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐2.如圖是二次函數y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④3.如圖,在正方形ABCD中,E為AB的中點,G,F分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.54.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.5.下列圖形中,是軸對稱圖形的是()A. B. C. D.6.一個正方形花壇的面積為7m2,其邊長為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<47.某市2017年實現生產總值達280億的目標,用科學記數法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10108.如圖,在平面直角坐標系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)9.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.3210.一個不透明的袋子里裝著質地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分攪勻后再隨機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.11.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任意選取一個白色的小正方形并涂黑,使黑色部分的圖形仍然構成一個軸對稱圖形的概率是()A. B. C. D.12.隨著“中國詩詞大會”節目的熱播,《唐詩宋詞精選》一書也隨之熱銷.如果一次性購買10本以上,超過10本的那部分書的價格將打折,并依此得到付款金額y(單位:元)與一次性購買該書的數量x(單位:本)之間的函數關系如圖所示,則下列結論錯誤的是()A.一次性購買數量不超過10本時,銷售價格為20元/本B.a=520C.一次性購買10本以上時,超過10本的那部分書的價格打八折D.一次性購買20本比分兩次購買且每次購買10本少花80元二、填空題:(本大題共6個小題,每小題4分,共24分.)13.對于函數,我們定義(m、n為常數).例如,則.已知:.若方程有兩個相等實數根,則m的值為__________.14.如果梯形的中位線長為6,一條底邊長為8,那么另一條底邊長等于__________.15.△ABC的頂點都在方格紙的格點上,則sinA=_▲.16.已知函數y=|x2﹣x﹣2|,直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個交點,則k的值為_____.17.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.18.如圖,長方形內有兩個相鄰的正方形,面積分別為3和9,那么陰影部分的面積為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知,在菱形ABCD中,∠ADC=60°,點H為CD上任意一點(不與C、D重合),過點H作CD的垂線,交BD于點E,連接AE.(1)如圖1,線段EH、CH、AE之間的數量關系是;(2)如圖2,將△DHE繞點D順時針旋轉,當點E、H、C在一條直線上時,求證:AE+EH=CH.20.(6分)我市某中學藝術節期間,向全校學生征集書畫作品.九年級美術王老師從全年級14個班中隨機抽取了4個班,對征集到的作品的數量進行了分析統計,制作了如下兩幅不完整的統計圖.王老師采取的調查方式是(填“普查”或“抽樣調查”),王老師所調查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補充完整;王老師所調查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現在要在其中抽兩人去參加學校總結表彰座談會,請直接寫出恰好抽中一男一女的概率.21.(6分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結果保留整數)參考數據:sin37≈0.60,cos37°=0.80,tan37°≈0.7522.(8分)如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,FG∥BE交AE于點G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FO?ED=OD?EF.23.(8分)旅游公司在景區內配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金x(元)是5的倍數.發現每天的營運規律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.(1)優惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)(2)當每輛車的日租金為多少元時,每天的凈收入最多?24.(10分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點,過點D作⊙O的切線,分別交AC、AB的延長線于點E和點F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.25.(10分)“食品安全”受到全社會的廣泛關注,我區兼善中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面的兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為°;(2)請補全條形統計圖;(3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為2:3,現從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.26.(12分)知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發現C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數據:sin53°≈,cos53°≈,tan53°≈)27.(12分)計算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:觀察可得,主視圖是三角形,俯視圖是兩個矩形,左視圖是矩形,所以這個幾何體是三棱柱,故選A.考點:由三視圖判定幾何體.2、C【解析】∵二次函數的圖象的開口向上,∴a>0。∵二次函數的圖象y軸的交點在y軸的負半軸上,∴c<0。∵二次函數圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確。∵1a﹣b=1a﹣1a=0,因此說法②正確。∵二次函數y=∴圖象與x軸的另一個交點的坐標是(1,0)。∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤。∵二次函數y=∴點(﹣5,y1)關于對稱軸的對稱點的坐標是(3,y1),∵當x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。3、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質的應用,利用勾股定理即可得解,解題的關鍵是證明△AEG∽△BFE.4、A【解析】作AH⊥BC于H,作直徑CF,連結BF,先利用等角的補角相等得到∠DAE=∠BAF,然后再根據同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據三角形中位線性質得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質.5、B【解析】分析:根據軸對稱圖形的概念求解.詳解:A、不是軸對稱圖形,故此選項不合題意;B、是軸對稱圖形,故此選項符合題意;C、不是軸對稱圖形,故此選項不合題意;D、不是軸對稱圖形,故此選項不合題意;故選B.點睛:本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.6、C【解析】

先根據正方形的面積公式求邊長,再根據無理數的估算方法求取值范圍.【詳解】解:∵一個正方形花壇的面積為,其邊長為,則a的取值范圍為:.故選:C.【點睛】此題重點考查學生對無理數的理解,會估算無理數的大小是解題的關鍵.7、D【解析】

根據科學計數法的定義來表示數字,選出正確答案.【詳解】解:把一個數表示成a(1≤a<10,n為整數)與10的冪相乘的形式,這種記數法叫做科學記數法,280億用科學計數法表示為2.8×1010,所以答案選D.【點睛】本題考查學生對科學計數法的概念的掌握和將數字用科學計數法表示的能力.8、A【解析】

延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標.【詳解】如圖,點P的坐標為(-4,-3).

故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.9、B【解析】

根據題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點睛】本題考查的知識點是三角形中位線定理,解題的關鍵是熟練的掌握三角形中位線定理.10、A【解析】

列表或畫樹狀圖得出所有等可能的結果,找出兩次都為紅球的情況數,即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數為20種,其中兩次都為紅球的情況有6種,∴,故選A.11、B【解析】解:∵根據軸對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合,白色的小正方形有13個,而能構成一個軸對稱圖形的有4個情況,∴使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是:.故選B.12、D【解析】

A、根據單價=總價÷數量,即可求出一次性購買數量不超過10本時,銷售單價,A選項正確;C、根據單價=總價÷數量結合前10本花費200元即可求出超過10本的那部分書的單價,用其÷前十本的單價即可得出C正確;B、根據總價=200+超過10本的那部分書的數量×16即可求出a值,B正確;D,求出一次性購買20本書的總價,將其與400相減即可得出D錯誤.此題得解.【詳解】解:A、∵200÷10=20(元/本),∴一次性購買數量不超過10本時,銷售價格為20元/本,A選項正確;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性購買10本以上時,超過10本的那部分書的價格打八折,C選項正確;B、∵200+16×(30﹣10)=520(元),∴a=520,B選項正確;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性購買20本比分兩次購買且每次購買10本少花40元,D選項錯誤.故選D.【點睛】考查了一次函數的應用,根據一次函數圖象結合數量關系逐一分析四個選項的正誤是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:根據題目中所給定義先求,再利用根與系數關系求m值.詳解:由所給定義知,,若=0,解得m=.點睛:一元二次方程的根的判別式是,△=b2-4ac,a,b,c分別是一元二次方程中二次項系數、一次項系數和常數項.

△>0說明方程有兩個不同實數解,△=0說明方程有兩個相等實數解,△<0說明方程無實數解.實際應用中,有兩種題型(1)證明方程實數根問題,需要對△的正負進行判斷,可能是具體的數直接可以判斷,也可能是含字母的式子,一般需要配方等技巧.14、4.【解析】

只需根據梯形的中位線定理“梯形的中位線等于兩底和的一半”,進行計算.【詳解】解:根據梯形的中位線定理“梯形的中位線等于兩底和的一半”,則另一條底邊長.故答案為:4【點睛】本題考查梯形中位線,用到的知識點為:梯形的中位線=(上底+下底)15、【解析】

在直角△ABD中利用勾股定理求得AD的長,然后利用正弦的定義求解.【詳解】在直角△ABD中,BD=1,AB=2,則AD===,則sinA===.故答案是:.16、1﹣1或﹣1【解析】

直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,直線y=kx+4與y=|x1-x-1|的圖象恰好有三個公共點,即-x1+x+1=kx+4有相等的實數解,利用根的判別式的意義可求出此時k的值,另外當y=kx+4過(1,0)時,也滿足條件.【詳解】解:當y=0時,x1-x-1=0,解得x1=-1,x1=1,

則拋物線y=x1-x-1與x軸的交點為(-1,0),(1,0),

把拋物線y=x1-x-1圖象x軸下方的部分沿x軸翻折到x軸上方,

則翻折部分的拋物線解析式為y=-x1+x+1(-1≤x≤1),

當直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,

直線y=kx+4與函數y=|x1-x-1|的圖象恰好有三個公共點,

即-x1+x+1=kx+4有相等的實數解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,

解得k=1±1,

所以k的值為1+1或1-1.

當k=1+1時,經檢驗,切點橫坐標為x=-<-1不符合題意,舍去.

當y=kx+4過(1,0)時,k=-1,也滿足條件,故答案為1-1或-1.【點睛】本題考查了二次函數與幾何變換:翻折變化不改變圖形的大小,故|a|不變,利用頂點式即可求得翻折后的二次函數解析式;也可利用絕對值的意義,直接寫出自變量在-1≤x≤1上時的解析式。17、【解析】

設AC=x,則AB=2x,根據面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關系求得,由二次函數的性質求得S△ABC取得最大值.【詳解】設AC=x,則AB=2x,根據面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關系有,解得,故當時,取得最大值,

故答案為:.【點睛】本題主要考查了余弦定理和面積公式在解三角形中的應用,考查了二次函數的性質,考查了計算能力,當涉及最值問題時,可考慮用函數的單調性和定義域等問題,屬于中檔題.18、1-1【解析】

設兩個正方形的邊長是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入陰影部分的面積是(y﹣x)x求出即可.【詳解】設兩個正方形的邊長是x、y(x<y),則x2=1,y2=9,x,y=1,則陰影部分的面積是(y﹣x)x=(11.故答案為11.【點睛】本題考查了二次根式的應用,主要考查學生的計算能力.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)EH2+CH2=AE2;(2)見解析.【解析】分析:(1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據全等三角形的性質得到EM=EH,DM=DH,等量代換得到AM=CH,根據勾股定理即可得到結論;

(2)如圖2,根據菱形的性質得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質得到∠EDG=60°,推出△DAE≌△DCG,根據全等三角形的性質即可得到結論.詳解:(1)EH2+CH2=AE2,如圖1,過E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等邊三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE與△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.點睛:考查了全等三角形的判定和性質、菱形的性質、旋轉的性質、等邊三角形的判定和性質,解題的關鍵是正確的作出輔助線.20、(1)抽樣調查;12;3;(2)60;(3).【解析】試題分析:(1)根據只抽取了4個班可知是抽樣調查,根據C在扇形圖中的角度求出所占的份數,再根據C的人數是5,列式進行計算即可求出作品的件數,然后減去A、C、D的件數即為B的件數;(2)求出平均每一個班的作品件數,然后乘以班級數14,計算即可得解;(3)畫出樹狀圖或列出圖表,再根據概率公式列式進行計算即可得解.試題解析:(1)抽樣調查,所調查的4個班征集到作品數為:5÷=12件,B作品的件數為:12﹣2﹣5﹣2=3件,故答案為抽樣調查;12;3;把圖2補充完整如下:(2)王老師所調查的四個班平均每個班征集作品=12÷4=3(件),所以,估計全年級征集到參展作品:3×14=42(件);(3)畫樹狀圖如下:列表如下:共有20種機會均等的結果,其中一男一女占12種,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考點:1.條形統計圖;2.用樣本估計總體;3.扇形統計圖;4.列表法與樹狀圖法;5.圖表型.21、景點A與B之間的距離大約為280米【解析】

由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的長,可以先求出AC和BC的長.【詳解】解:如圖,作PC⊥AB于C,則∠ACP=∠BCP=90°,由題意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP?cosA=200×0.80=160,PC=AP?sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景點A與B之間的距離大約為280米.【點睛】本題考查了解直角三角形的應用-方向角問題,對于解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.22、(1)證明見解析;(2)AG=;(3)證明見解析.【解析】

(1)根據正方形的性質得到AD∥BC,AB∥CD,AD=CD,根據相似三角形的性質列出比例式,等量代換即可;(2)根據勾股定理求出AE,根據相似三角形的性質計算即可;(3)延長GF交AM于H,根據平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結論.【詳解】解:(1)∵四邊形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延長GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO?ED=OD?EF.【點睛】本題主要考查平行線分線段成比例及正方形的性質,掌握平行線分線段中的線段對應成比例是解題的關鍵,注意利用比例相等也可以證明線段相等.23、(1)每輛車的日租金至少應為25元;(2)當每輛車的日租金為175元時,每天的凈收入最多是5025元.【解析】試題分析:(1)觀光車全部租出每天的凈收入=出租自行車的總收入﹣管理費,由凈收入為正列出不等式求解即可;(2)由函數解析式是分段函數,在每一段內求出函數最大值,比較得出函數的最大值.試題解析:(1)由題意知,若觀光車能全部租出,則0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍數,∴每輛車的日租金至少應為25元;(2)設每輛車的凈收入為y元,當0<x≤100時,y1=50x﹣1100,∵y1隨x的增大而增大,∴當x=100時,y1的最大值為50×100﹣1100=3900;當x>100時,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,當x=175時,y2的最大值為5025,5025>3900,故當每輛車的日租金為175元時,每天的凈收入最多是5025元.考點:二次函數的應用.24、(1)見解析;(2)1【解析】

(1)連接AD,如圖,利用圓周角定理得∠ADB=90°,利用切線的性質得OD⊥DF,則根據等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后證明∠COD=∠OAD得到∠CAB=2∠BDF;

(2)連接BC交OD于H,如圖,利用垂徑定理得到OD⊥BC,則CH=BH,于是可判斷OH為△ABC的中位線,所以OH=1.5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=1.【詳解】(1)證明:連接AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵EF為切線,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中點,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:連接BC交OD于H,如圖,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論