四川省渠縣市級名校2024年中考四模數學試題含解析_第1頁
四川省渠縣市級名校2024年中考四模數學試題含解析_第2頁
四川省渠縣市級名校2024年中考四模數學試題含解析_第3頁
四川省渠縣市級名校2024年中考四模數學試題含解析_第4頁
四川省渠縣市級名校2024年中考四模數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省渠縣市級名校2024年中考四模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知a,b,c在數軸上的位置如圖所示,化簡|a+c|-|a-2b|-|c+2b|的結果是()A.4b+2c B.0 C.2c D.2a+2c2.對于反比例函數y=(k≠0),下列所給的四個結論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數的圖象關于直線y=﹣x成軸對稱3.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數515x對于不同的x,下列關于年齡的統計量不會發生改變的是()A.眾數、中位數 B.平均數、中位數 C.平均數、方差 D.中位數、方差4.的整數部分是()A.3 B.5 C.9 D.65.如圖,△ABC為鈍角三角形,將△ABC繞點A按逆時針方向旋轉120°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數為()A.45° B.60° C.70° D.90°6.如圖所示,在長為8cm,寬為6cm的矩形中,截去一個矩形(圖中陰影部分),如果剩下的矩形與原矩形相似,那么剩下矩形的面積是()A.28cm2 B.27cm2 C.21cm2 D.20cm27.如圖,△ABC中,AB>AC,∠CAD為△ABC的外角,觀察圖中尺規作圖的痕跡,則下列結論錯誤的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC8.若a與﹣3互為倒數,則a=()A.3 B.﹣3 C.13 D.-9.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π10.人的頭發直徑約為0.00007m,這個數據用科學記數法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×10511.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數關系的是()A. B. C. D.12.如圖,在中,,分別以點和點為圓心,以大于的長為半徑作弧,兩弧相交于點和點,作直線交于點,交于點,連接.若,則的度數是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果兩個相似三角形對應邊上的高的比為1:4,那么這兩個三角形的周長比是___.14.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.15.將一副直角三角板如圖放置,使含30°角的三角板的直角邊和含45°角的三角板一條直角邊在同一條直線上,則∠1的度數為__________16.如圖,學校環保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.17.如圖,將一幅三角板的直角頂點重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不動,將三角板DCE繞其直角頂點C順時針旋轉一周.當△DCE一邊與AB平行時,∠ECB的度數為_________________________.18.拋物線y=x2+2x+m﹣1與x軸有交點,則m的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在學習了矩形這節內容之后,明明同學發現生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點P為AB邊上的定點,且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動點E,當的值是多少時,△PDE的周長最小?如圖(3),點Q是邊AB上的定點,且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長交AB的延長線于點F,連接CF,G為CF的中點,M、N分別為線段QF和CD上的動點,且始終保持QM=CN,MN與DF相交于點H,請問GH的長度是定值嗎?若是,請求出它的值,若不是,請說明理由.20.(6分)如圖,四邊形ABCD是平行四邊形,點E在BC上,點F在AD上,BE=DF,求證:AE=CF.21.(6分)某校為美化校園,計劃對面積為1800m2的區域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400m2區域的綠化時,甲隊比乙隊少用4天.(1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?(2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?22.(8分)從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45km/h,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.23.(8分)凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優惠,優勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.求一次至少購買多少只計算器,才能以最低價購買?求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數關系式,并寫出自變量x的取值范圍;一天,甲顧客購買了46只,乙顧客購買了50只,店主發現賣46只賺的錢反而比賣50只賺的錢多,請你說明發生這一現象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?24.(10分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE弧.求證:AB為⊙C的切線.求圖中陰影部分的面積.25.(10分)在等邊△ABC外側作直線AM,點C關于AM的對稱點為D,連接BD交AM于點E,連接CE,CD,AD.(1)依題意補全圖1,并求∠BEC的度數;(2)如圖2,當∠MAC=30°時,判斷線段BE與DE之間的數量關系,并加以證明;(3)若0°<∠MAC<120°,當線段DE=2BE時,直接寫出∠MAC的度數.26.(12分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.27.(12分)科技改變生活,手機導航極大方便了人們的出行,如圖,小明一家自駕到古鎮C游玩,到達A地后,導航顯示車輛應沿北偏西55°方向行駛4千米至B地,再沿北偏東35°方向行駛一段距離到達古鎮C,小明發現古鎮C恰好在A地的正北方向,求B、C兩地的距離(結果保留整數)(參考數據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】由數軸上點的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a?2b>0,c+2b<0,則原式=a+c?a+2b+c+2b=4b+2c.故選:B.點睛:本題考查了整式的加減以及數軸,涉及的知識有:去括號法則以及合并同類項法則,熟練掌握運算法則是解本題的關鍵.2、D【解析】分析:根據反比例函數的性質一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減小;故本選項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數的性質,解題的關鍵是熟練掌握反比例函數的性質,靈活運用所學知識解決問題,屬于中考常考題型.3、A【解析】

由頻數分布表可知后兩組的頻數和為10,即可得知總人數,結合前兩組的頻數知出現次數最多的數據及第15、16個數據的平均數,可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數和為,則總人數為,故該組數據的眾數為14歲,中位數為(歲),所以對于不同的x,關于年齡的統計量不會發生改變的是眾數和中位數,故選A.【點睛】本題主要考查頻數分布表及統計量的選擇,由表中數據得出數據的總數是根本,熟練掌握平均數、中位數、眾數及方差的定義和計算方法是解題的關鍵.4、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故選C.5、D【解析】已知△ABC繞點A按逆時針方向旋轉l20°得到△AB′C′,根據旋轉的性質可得∠BAB′=∠CAC′=120°,AB=AB′,根據等腰三角形的性質和三角形的內角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故選D.6、B【解析】

根據題意,剩下矩形與原矩形相似,利用相似形的對應邊的比相等可得.【詳解】解:依題意,在矩形ABDC中截取矩形ABFE,則矩形ABDC∽矩形FDCE,則設DF=xcm,得到:解得:x=4.5,則剩下的矩形面積是:4.5×6=17cm1.【點睛】本題就是考查相似形的對應邊的比相等,分清矩形的對應邊是解決本題的關鍵.7、D【解析】

解:根據圖中尺規作圖的痕跡,可得∠DAE=∠B,故A選項正確,∴AE∥BC,故C選項正確,∴∠EAC=∠C,故B選項正確,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D選項錯誤,故選D.【點睛】本題考查作圖—復雜作圖;平行線的判定與性質;三角形的外角性質.8、D【解析】試題分析:根據乘積是1的兩個數互為倒數,可得3a=1,∴a=13故選C.考點:倒數.9、A【解析】

利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據弧長公式計算劣弧的長.【詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了圓周角定理和弧長公式.10、B【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.00007m,這個數據用科學記數法表示7×10﹣1.故選:B.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.11、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數.故選A.12、B【解析】

根據題意可知DE是AC的垂直平分線,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性質即可求出∠CDA的度數.【詳解】解:∵DE是AC的垂直平分線,

∴DA=DC,∴∠DCE=∠A,∵∠ACB=90°,∠B=34°,∴∠A=56°,∴∠CDA=∠DCE+∠A=112°,

故選B.【點睛】本題考查作圖-基本作圖、線段的垂直平分線的性質、等腰三角形的性質,三角形有關角的性質等知識,解題的關鍵是熟練運用這些知識解決問題,屬于中考常考題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1:4【解析】∵兩個相似三角形對應邊上的高的比為1∶4,∴這兩個相似三角形的相似比是1:4∵相似三角形的周長比等于相似比,∴它們的周長比1:4,故答案為:1:4.【點睛】本題考查了相似三角形的性質,相似三角形對應邊上的高、相似三角形的周長比都等于相似比.14、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據相似三角形的性質可得,即可得AC2=CD?BC=4×8=32,解得AC=4.15、75°【解析】

先根據同旁內角互補,兩直線平行得出AC∥DF,再根據兩直線平行內錯角相等得出∠2=∠A=45°,然后根據三角形內角與外角的關系可得∠1的度數.【詳解】∵∠ACB=∠DFE=90°,∴∠ACB+∠DFE=180°,∴AC∥DF,∴∠2=∠A=45°,∴∠1=∠2+∠D=45°+30°=75°.故答案為:75°.【點睛】本題考查了平行線的判定與性質,三角形外角的性質,求出∠2=∠A=45°是解題的關鍵.16、1【解析】

先根據CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數的定義即可得出結論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,熟記銳角三角函數的定義是解答此題的關鍵.17、15°、30°、60°、120°、150°、165°【解析】分析:根據CD∥AB,CE∥AB和DE∥AB三種情況分別畫出圖形,然后根據每種情況分別進行計算得出答案,每種情況都會出現銳角和鈍角兩種情況.詳解:①、∵CD∥AB,∴∠ACD=∠A=30°,∵∠ACD+∠ACE=∠DCE=90°,∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD∥AB時,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如圖1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE∥AB時,∠ECB=∠B=60°.③如圖2,DE∥AB時,延長CD交AB于F,則∠BFC=∠D=45°,在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.點睛:本題主要考查的是平行線的性質與判定,屬于中等難度的題型.解決這個問題的關鍵就是根據題意得出圖形,然后分兩種情況得出角的度數.18、m≤1.【解析】

由拋物線與x軸有交點可得出方程x1+1x+m-1=0有解,利用根的判別式△≥0,即可得出關于m的一元一次不等式,解之即可得出結論.【詳解】∴關于x的一元二次方程x1+1x+m?1=0有解,∴△=11?4(m?1)=8?4m≥0,解得:m≤1.故答案為:m≤1.【點睛】本題考查的知識點是拋物線與坐標軸的交點,解題的關鍵是熟練的掌握拋物線與坐標軸的交點.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明見解析(2)(3)【解析】

(1)根據題中“完美矩形”的定義設出AD與AB,根據AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點P關于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對稱的性質得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對應邊相等得到FH=DH,再由G為CF中點,得到HG為中位線,利用中位線性質求出GH的長即可.【詳解】(1)在圖1中,設AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點P關于BC的對稱點P′,連接DP′交BC于點E,此時△PDE的周長最小,設AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵MF∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點,∴GH是△CFD的中位線,∴GH=CD=×2=.【點睛】此題屬于相似綜合題,涉及的知識有:相似三角形的判定與性質,全等三角形的判定與性質,勾股定理,三角形中位線性質,平行線的判定與性質,熟練掌握相似三角形的性質是解本題的關鍵.20、見解析【解析】

根據平行四邊形性質得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根據平行四邊形的判定推出四邊形AECF是平行四邊形,即可得出結論.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四邊形AECF是平行四邊形,∴AE=CF.【點睛】本題考查了平行四邊形的性質和判定的應用,注意:平行四邊形的對邊平行且相等,有一組對邊平行且相等的四邊形是平行四邊形.21、(1)111,51;(2)11.【解析】

(1)設乙工程隊每天能完成綠化的面積是x(m2),根據在獨立完成面積為411m2區域的綠化時,甲隊比乙隊少用4天,列出方程,求解即可;(2)設應安排甲隊工作y天,根據這次的綠化總費用不超過8萬元,列出不等式,求解即可.【詳解】解:(1)設乙工程隊每天能完成綠化的面積是x(m2),根據題意得:解得:x=51,經檢驗x=51是原方程的解,則甲工程隊每天能完成綠化的面積是51×2=111(m2),答:甲、乙兩工程隊每天能完成綠化的面積分別是111m2、51m2;(2)設應安排甲隊工作y天,根據題意得:1.4y+×1.25≤8,解得:y≥11,答:至少應安排甲隊工作11天.22、4小時.【解析】

本題依據題意先得出等量關系即客車由高速公路從A地道B的速度=客車由普通公路的速度+45,列出方程,解出檢驗并作答.【詳解】解:設客車由高速公路從甲地到乙地需x小時,則走普通公路需2x小時,根據題意得:解得x=4經檢驗,x=4原方程的根,答:客車由高速公路從甲地到乙地需4時.【點睛】本題主要考查分式方程的應用,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.根據速度=路程÷時間列出相關的等式,解答即可.23、(1)1;(3);(3)理由見解析,店家一次應賣45只,最低售價為16.5元,此時利潤最大.【解析】試題分析:(1)設一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降低0.10元,而最低價為每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根據(1)得到x≤1,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據已知條件可以得到y與x的函數關系式;(3)首先把函數變為y=-0.1x2+9x試題解析:(1)設一次購買x只,則30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少買1只,才能以最低價購買;(3)當10<x≤1時,y=[30﹣0.1(x﹣10)﹣13]x=-0.1x綜上所述:;(3)y=-0.1x2+9x②當45<x≤1時,y隨x的增大而減小,即當賣的只數越多時,利潤變小.且當x=46時,y1=303.4,當x=1時,y3=3.∴y1>y3.即出現了賣46只賺的錢比賣1只賺的錢多的現象.當x=45時,最低售價為30﹣0.1(45﹣10)=16.5(元),此時利潤最大.故店家一次應賣45只,最低售價為16.5元,此時利潤最大.考點:二次函數的應用;二次函數的最值;最值問題;分段函數;分類討論.24、(1)證明見解析;(2)1-π.【解析】

(1)解直角三角形求出BC,根據勾股定理求出AB,根據三角形面積公式求出CF,根據切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質和判定等知識點,能求出CF的長是解答此題的關鍵.25、(1)補全圖形如圖1所示,見解析,∠BEC=60°;(2)BE=2DE,見解析;(3)∠MAC=90°.【解析】

(1)根據軸對稱作出圖形,先判斷出∠ABD=∠ADB=y,再利用三角形的內角和得出x+y即可得出結論;(2)同(1)的方法判斷出四邊形ABCD是菱形,進而得出∠CBD=30°,進而得出∠BCD=90°,即可得出結論;(3)先作出EF=2BE,進而判斷出EF=CE,再判斷出∠CBE=90°,進而得出∠BCE=30°,得出∠AEC=60°,即可得出結論.【詳解】(1)補全圖形如圖1所示,根據軸對稱得,AD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論