




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市雨花區雅禮教育集團重點中學2023-2024學年中考數學考前最后一卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.多項式ax2﹣4ax﹣12a因式分解正確的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)2.如圖,將邊長為8㎝的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是()A.3cm B.4cm C.5cm D.6cm3.為弘揚傳統文化,某校初二年級舉辦傳統文化進校園朗誦大賽,小明同學根據比賽中九位評委所給的某位參賽選手的分數,制作了一個表格,如果去掉一個最高分和一個最低分,則表中數據一定不發生變化的是()中位數眾數平均數方差9.29.39.10.3A.中位數 B.眾數 C.平均數 D.方差4.已知x﹣2y=3,那么代數式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.95.空氣的密度為0.00129g/cm3,0.00129這個數用科學記數法可表示為()A.0.129×10﹣2 B.1.29×10﹣2 C.1.29×10﹣3 D.12.9×10﹣16.用教材中的計算器依次按鍵如下,顯示的結果在數軸上對應點的位置介于()之間.A.B與C B.C與D C.E與F D.A與B7.分式方程的解為()A.x=-2 B.x=-3 C.x=2 D.x=38.根據《九章算術》的記載中國人最早使用負數,下列負數中最大的是()A.-1 B.-12 C.-9.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,,則DE:EC=()A.2:5 B.2:3 C.3:5 D.3:210.(3分)學校要組織足球比賽.賽制為單循環形式(每兩隊之間賽一場).計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽.根據題意,下面所列方程正確的是()A.B.C.D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,矩形活動框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點O為AB的中點,固定點A、B,把這個矩形活動框架沿箭頭方向推,使D落在y軸的正半軸上點D′處,點C的對應點C′的坐標為______.12.已知AB=AC,tanA=2,BC=5,則△ABC的面積為_______________.13.空氣質量指數,簡稱AQI,如果AQI在0~50空氣質量類別為優,在51~100空氣質量類別為良,在101~150空氣質量類別為輕度污染,按照某市最近一段時間的AQI畫出的頻數分布直方圖如圖所示.已知每天的AQI都是整數,那么空氣質量類別為優和良的天數共占總天數的百分比為______%.14.因式分解:3x3﹣12x=_____.15.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點上,從C、D、E、F四點中任取一點,與點A、B為頂點作三角形,則所作三角形為等腰三角形的概率是__.16.如圖,在△ABC中,∠A=60°,若剪去∠A得到四邊形BCDE,則∠1+∠2=______.三、解答題(共8題,共72分)17.(8分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數繪制成如圖所示的折線統計圖.(1)根據圖中所給信息填寫下表:投中個數統計平均數中位數眾數A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩定性考慮應該選派誰?請你利用學過的統計量對問題進行分析說明.18.(8分)(2016山東省煙臺市)由于霧霾天氣頻發,市場上防護口罩出現熱銷,某醫藥公司每月固定生產甲、乙兩種型號的防霧霾口罩共20萬只,且所有產品當月全部售出,原料成本、銷售單價及工人生產提成如表:(1)若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產品分別是多少萬只?(2)公司實行計件工資制,即工人每生產一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產提成總額)不超過239萬元,應怎樣安排甲、乙兩種型號的產量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)19.(8分)某商場柜臺銷售每臺進價分別為160元、120元的、兩種型號的電器,下表是近兩周的銷售情況:銷售時段銷售數量銷售收入種型號種型號第一周3臺4臺1200元第二周5臺6臺1900元(進價、售價均保持不變,利潤=銷售收入—進貨成本)(1)求、兩種型號的電器的銷售單價;(2)若商場準備用不多于7500元的金額再采購這兩種型號的電器共50臺,求種型號的電器最多能采購多少臺?(3)在(2)中商場用不多于7500元采購這兩種型號的電器共50臺的條件下,商場銷售完這50臺電器能否實現利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.20.(8分)如圖,在平面直角坐標系xOy中,已知點A(3,0),點B(0,3),點O為原點.動點C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點B'恰好落在點A處,求此時點D的坐標;(Ⅱ)如圖2,若BD=AC,點B'恰好落在y軸上,求此時點C的坐標;(Ⅲ)若點C的橫坐標為2,點B'落在x軸上,求點B'的坐標(直接寫出結果即可).21.(8分)(1)計算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化簡,再求值:()+,其中a=﹣2+.22.(10分)如圖,已知⊙O中,AB為弦,直線PO交⊙O于點M、N,PO⊥AB于C,過點B作直徑BD,連接AD、BM、AP.(1)求證:PM∥AD;(2)若∠BAP=2∠M,求證:PA是⊙O的切線;(3)若AD=6,tan∠M=,求⊙O的直徑.23.(12分)在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+3a﹣2(a≠0)與x軸交于A,B兩(點A在點B左側).(1)當拋物線過原點時,求實數a的值;(2)①求拋物線的對稱軸;②求拋物線的頂點的縱坐標(用含a的代數式表示);(3)當AB≤4時,求實數a的取值范圍.24.某學校為弘揚中國傳統詩詞文化,在九年級隨機抽查了若干名學生進行測試,然后把測試結果分為4個等級;A、B、C、D,對應的成績分別是9分、8分、7分、6分,并將統計結果繪制成兩幅如圖所示的統計圖.請結合圖中的信息解答下列問題:(1)本次抽查測試的學生人數為,圖①中的a的值為;(2)求統計所抽查測試學生成績數據的平均數、眾數和中位數.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:首先提取公因式a,進而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案為a(x﹣6)(x+2).點評:此題主要考查了提取公因式法以及十字相乘法分解因式,正確利用十字相乘法分解因式是解題關鍵.2、A【解析】分析:根據折疊的性質,只要求出DN就可以求出NE,在直角△CEN中,若設CN=x,則DN=NE=8﹣x,CE=4cm,根據勾股定理就可以列出方程,從而解出CN的長.詳解:設CN=xcm,則DN=(8﹣x)cm,由折疊的性質知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=1.故選:A.點睛:此題主要考查了折疊問題,明確折疊問題其實質是軸對稱,對應線段相等,對應角相等,通常用勾股定理解決折疊問題.3、A【解析】
根據中位數:將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數可得答案.【詳解】如果去掉一個最高分和一個最低分,則表中數據一定不發生變化的是中位數.故選A.點睛:本題主要考查了中位數,關鍵是掌握中位數定義.4、A【解析】
解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故選A.5、C【解析】試題分析:0.00129這個數用科學記數法可表示為1.29×10﹣1.故選C.考點:科學記數法—表示較小的數.6、A【解析】試題分析:在計算器上依次按鍵轉化為算式為﹣=-1.414…;計算可得結果介于﹣2與﹣1之間.故選A.考點:1、計算器—數的開方;2、實數與數軸7、B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,經檢驗x=﹣3是分式方程的解.故選B.8、B【解析】
根據兩個負數,絕對值大的反而小比較.【詳解】解:∵?12>?1>?2∴負數中最大的是?12故選:B.【點睛】本題考查了實數大小的比較,解題的關鍵是知道正數大于0,0大于負數,兩個負數,絕對值大的反而小.9、B【解析】
∵四邊形ABCD是平行四邊形,∴AB∥CD∴∠EAB=∠DEF,∠AFB=∠DFE∴△DEF∽△BAF∴∵,∴DE:AB=2:5∵AB=CD,∴DE:EC=2:3故選B10、B.【解析】試題分析:設有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:,故選B.考點:由實際問題抽象出一元二次方程.二、填空題(本大題共6個小題,每小題3分,共18分)11、(2,1)【解析】
由已知條件得到AD′=AD=,AO=AB=1,根據勾股定理得到OD′==1,于是得到結論.【詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,
∴C′(2,1),
故答案為:(2,1)【點睛】本題考查了矩形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題的關鍵.12、【解析】
作CD⊥AB,由tanA=2,設AD=x,CD=2x,根據勾股定理AC=x,則BD=,然后在Rt△CBD中BC2=BD2+CD2,即52=4x2+,解得x2=,則S△ABC===【詳解】如圖作CD⊥AB,∵tanA=2,設AD=x,CD=2x,∴AC=x,∴BD=,在Rt△CBD中BC2=BD2+CD2,即52=4x2+,x2=,∴S△ABC===【點睛】此題主要考查三角函數的應用,解題的關鍵是根據題意作出輔助線進行求解.13、80【解析】【分析】先求出AQI在0~50的頻數,再根據%,求出百分比.【詳解】由圖可知AQI在0~50的頻數為10,所以,空氣質量類別為優和良的天數共占總天數的百分比為:%=80%..故答案為80【點睛】本題考核知識點:數據的分析.解題關鍵點:從統計圖獲取信息,熟記百分比計算方法.14、3x(x+2)(x﹣2)【解析】
先提公因式3x,然后利用平方差公式進行分解即可.【詳解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案為3x(x+2)(x﹣2).【點睛】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對多項式進行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運用公式法分解.15、.【解析】
解:根據從C、D、E、F四個點中任意取一點,一共有4種可能,選取D、C、F時,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【點睛】本題考查概率的計算及等腰三角形的判定,熟記等要三角形的性質及判定方法和概率的計算公式是本題的解題關鍵.16、240.【解析】
試題分析:∠1+∠2=180°+60°=240°.考點:1.三角形的外角性質;2.三角形內角和定理.三、解答題(共8題,共72分)17、(1)7,9,7;(2)應該選派B;【解析】
(1)分別利用平均數、中位數、眾數分析得出答案;(2)利用方差的意義分析得出答案.【詳解】(1)A成績的平均數為(9+10+4+3+9+7)=7;眾數為9;B成績排序后為6,7,7,7,7,8,故中位數為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩定,從投籃穩定性考慮應該選派B.【點睛】此題主要考查了中位數、眾數、方差的定義,方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好.18、(1)甲型號的產品有10萬只,則乙型號的產品有10萬只;(2)安排甲型號產品生產15萬只,乙型號產品生產5萬只,可獲得最大利潤91萬元.【解析】
(1)設甲型號的產品有x萬只,則乙型號的產品有(20﹣x)萬只,根據銷售收入為300萬元可列方程18x+12(20﹣x)=300,解方程即可;(2)設安排甲型號產品生產y萬只,則乙型號產品生產(20﹣y)萬只,根據公司六月份投入總成本(原料總成本+生產提成總額)不超過239萬元列出不等式,求出不等式的解集確定出y的范圍,再根據利潤=售價﹣成本列出W與y的一次函數,根據y的范圍確定出W的最大值即可.【詳解】(1)設甲型號的產品有x萬只,則乙型號的產品有(20﹣x)萬只,根據題意得:18x+12(20﹣x)=300,解得:x=10,則20﹣x=20﹣10=10,則甲、乙兩種型號的產品分別為10萬只,10萬只;(2)設安排甲型號產品生產y萬只,則乙型號產品生產(20﹣y)萬只,根據題意得:13y+8.8(20﹣y)≤239,解得:y≤15,根據題意得:利潤W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,當y=15時,W最大,最大值為91萬元.所以安排甲型號產品生產15萬只,乙型號產品生產5萬只時,可獲得最大利潤為91萬元.考點:一元一次方程的應用;一元一次不等式的應用;一次函數的應用.19、(1)A型電器銷售單價為200元,B型電器銷售單價150元;(2)最多能采購37臺;(3)方案一:采購A型36臺B型14臺;方案二:采購A型37臺B型13臺.【解析】
(1)設A、B兩種型號電器的銷售單價分別為x元、y元,根據3臺A型號4臺B型號的電器收入1200元,5臺A型號6臺B型號的電器收入1900元,列方程組求解;(2)設采購A種型號電器a臺,則采購B種型號電器(50?a)臺,根據金額不多余7500元,列不等式求解;(3)根據A型號的電器的進價和售價,B型號的電器的進價和售價,再根據一件的利潤乘以總的件數等于總利潤列出不等式,再進行求解即可得出答案.【詳解】解:(1)設A型電器銷售單價為x元,B型電器銷售單價y元,則,解得:,答:A型電器銷售單價為200元,B型電器銷售單價150元;(2)設A型電器采購a臺,則160a+120(50?a)≤7500,解得:a≤,則最多能采購37臺;(3)設A型電器采購a臺,依題意,得:(200?160)a+(150?120)(50?a)>1850,解得:a>35,則35<a≤,∵a是正整數,∴a=36或37,方案一:采購A型36臺B型14臺;方案二:采購A型37臺B型13臺.【點睛】本題考查了二元一次方程組和一元一次不等式的應用,解答本題的關鍵是讀懂題意,設出未知數,找出合適的等量關系和不等關系,列方程組和不等式求解.20、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】
(1)設OD為x,則BD=AD=3,在RT△ODA中應用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標及BD=AC可求解出BD長度,再由特殊角的三角函數即可求解;(3)過點C作CE⊥AO于E,由A、B坐標及C的橫坐標為1,利用相似可求解出BC、CE、OC等長度;分點B’在A點右邊和左邊兩種情況進行討論,由翻折的對稱性可知BC=B’C,再利用特殊角的三角函數可逐一求解.【詳解】(Ⅰ)設OD為x,∵點A(3,0),點B(0,),∴AO=3,BO=∴AB=6∵折疊∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折疊∴∠BDC=∠CDO=90°∴CD∥OA∴且BD=AC,∴∴BD=﹣18∴OD=﹣(﹣18)=18﹣∵tan∠ABO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=,∴CD=11﹣6∴D(11﹣6,11﹣18)(Ⅲ)如圖:過點C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,CE=∵BC=AB﹣AC∴BC=6﹣1=4若點B'落在A點右邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=1+∴B'(1+,0)若點B'落在A點左邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=﹣1∴B'(1﹣,0)綜上所述:B'(1+,0),(1﹣,0)【點睛】本題結合翻折綜合考查了三角形相似和特殊角的三角函數,第3問中理解B’點的兩種情況是解題關鍵.21、(1)-1;(2).【解析】
(1)根據零指數冪的意義、特殊角的銳角三角函數以及負整數指數冪的意義即可求出答案;(2)先化簡原式,然后將a的值代入即可求出答案.【詳解】(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;(2)原式=+=當a=﹣2+時,原式==.【點睛】本題考查了學生的運算能力,解題的關鍵是熟練運用運算法則,本題屬于基礎題型.22、(1)證明見解析;(2)證明見解析;(3)1;【解析】
(1)根據平行線的判定求出即可;(2)連接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根據切線的判定得出即可;(3)設BC=x,CM=2x,根據相似三角形的性質和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根據三角形的中位線性質得出0.71x=AD=3,求出x即可.【詳解】(1)∵BD是直徑,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)連接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半徑,∴PA是⊙O的切線;(3)連接BN,則∠MBN=90°.∵tan∠M=,∴=,設BC=x,CM=2x,∵MN是⊙O直徑,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴,∴BC2=NC×MC,∴NC=x,∴MN=2x+x=2.1x,∴OM=MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中點,C是AB的中點,AD=6,∴OC=0.71x=AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半徑為1.【點睛】本題考查了圓周角定理,切線的性質和判定,相似三角形的性質和判定等知識點,能靈活運用知識點進行推理是解此題的關鍵,此題有一定的難度.23、(1)a=;(2)①x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)a的范圍為a<﹣2或a≥.【解析】
(1)把原點坐標代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把拋物線解析式配成頂點式,即可得到拋物線的對稱軸和拋物線的頂點的縱坐標;(3)設A(m,1),B(n,1),利用拋物線與x軸的交點問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品經營質量管理制度
- 藥品采購預警管理制度
- 藥店辦公日常管理制度
- 藥店服務衛生管理制度
- 莆田校外托管管理制度
- 薪酬福利職級管理制度
- 設備升級改造管理制度
- 設備定期檢定管理制度
- 設備日常使用管理制度
- 設備生產人員管理制度
- DB61∕T 1914-2024 煤礦安全風險分級管控和隱患排查治理 雙重預防機制建設與運行規范
- 種植二期手術護理配合
- 行政事業單位內部控制工作中存在的問題與遇到的困難
- 人工智能在醫療器械中的應用-全面剖析
- 智慧農旅綜合體項目可行性研究報告(參考范文)
- 2025年標準離婚協議書范本完整版
- 四川2024年11月四川南充市人民政府辦公室遴選(考調)工作人員3人國家公務員考試消息筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2025年云南省保山市隆陽區小升初模擬數學測試卷含解析
- 2024年鄭州市公安機關招聘警務輔助人員筆試真題
- 火災解封申請書
- 2025年江蘇鹽城市燕舞集團有限公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論