安徽省潛山市第二中學2022-2023學年高三數學第一學期期末檢測模擬試題含解析_第1頁
安徽省潛山市第二中學2022-2023學年高三數學第一學期期末檢測模擬試題含解析_第2頁
安徽省潛山市第二中學2022-2023學年高三數學第一學期期末檢測模擬試題含解析_第3頁
安徽省潛山市第二中學2022-2023學年高三數學第一學期期末檢測模擬試題含解析_第4頁
安徽省潛山市第二中學2022-2023學年高三數學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.據國家統計局發布的數據,2019年11月全國CPI(居民消費價格指數),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%2.已知非零向量,滿足,,則與的夾角為()A. B. C. D.3.已知等比數列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.4.若各項均為正數的等比數列滿足,則公比()A.1 B.2 C.3 D.45.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.6.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經過的()A.重心 B.垂心 C.外心 D.內心7.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側棱,,的中點.若在三棱錐內,且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.8.高斯是德國著名的數學家,近代數學奠基者之一,享有“數學王子”的稱號,用其名字命名的“高斯函數”為:設,用表示不超過的最大整數,則稱為高斯函數,例如:,,已知函數(),則函數的值域為()A. B. C. D.9.函數的圖象大致是()A. B.C. D.10.我國古代有著輝煌的數學研究成果,其中的《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,有豐富多彩的內容,是了解我國古代數學的重要文獻.這5部專著中有3部產生于漢、魏、晉、南北朝時期.某中學擬從這5部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.11.若變量,滿足,則的最大值為()A.3 B.2 C. D.1012.歷史上有不少數學家都對圓周率作過研究,第一個用科學方法尋求圓周率數值的人是阿基米德,他用圓內接和外切正多邊形的周長確定圓周長的上下界,開創了圓周率計算的幾何方法,而中國數學家劉徽只用圓內接正多邊形就求得的近似值,他的方法被后人稱為割圓術.近代無窮乘積式、無窮連分數、無窮級數等各種值的表達式紛紛出現,使得值的計算精度也迅速增加.華理斯在1655年求出一個公式:,根據該公式繪制出了估計圓周率的近似值的程序框圖,如下圖所示,執行該程序框圖,已知輸出的,若判斷框內填入的條件為,則正整數的最小值是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,且,則_________.14.函數的定義域為____.15.已知函數,則下列結論中正確的是_________.①是周期函數;②的對稱軸方程為,;③在區間上為增函數;④方程在區間有6個根.16.已知函數的最小值為2,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,且.(1)若,求的最小值,并求此時的值;(2)若,求證:.18.(12分)已知命題:,;命題:函數無零點.(1)若為假,求實數的取值范圍;(2)若為假,為真,求實數的取值范圍.19.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現統計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數表:亮燈時長/頻數1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設表示這10000盞燈在某一時刻亮燈的數目.①求的數學期望和方差;②若隨機變量滿足,則認為.假設當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.20.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應的一個特征向量.21.(12分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內,求的面積.22.(10分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.2、B【解析】

由平面向量垂直的數量積關系化簡,即可由平面向量數量積定義求得與的夾角.【詳解】根據平面向量數量積的垂直關系可得,,所以,即,由平面向量數量積定義可得,所以,而,即與的夾角為.故選:B【點睛】本題考查了平面向量數量積的運算,平面向量夾角的求法,屬于基礎題.3、C【解析】

在等比數列中,由即可表示之間的關系.【詳解】由題可知,等比數列中,且公比為2,故故選:C【點睛】本題考查等比數列求和公式的應用,屬于基礎題.4、C【解析】

由正項等比數列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數列基本量的求法,屬基礎題.5、D【解析】

根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.6、B【解析】

解出,計算并化簡可得出結論.【詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經過△ABC的垂心.故選B.【點睛】本題考查了平面向量的數量積運算在幾何中的應用,根據條件中的角計算是關鍵.7、D【解析】

如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.8、B【解析】

利用換元法化簡解析式為二次函數的形式,根據二次函數的性質求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數的對稱軸方程為,所以,,所以,所以的值域為.故選:B【點睛】本小題考查函數的定義域與值域等基礎知識,考查學生分析問題,解決問題的能力,運算求解能力,轉化與化歸思想,換元思想,分類討論和應用意識.9、C【解析】

根據函數奇偶性可排除AB選項;結合特殊值,即可排除D選項.【詳解】∵,,∴函數為奇函數,∴排除選項A,B;又∵當時,,故選:C.【點睛】本題考查了依據函數解析式選擇函數圖象,注意奇偶性及特殊值的用法,屬于基礎題.10、D【解析】

利用列舉法,從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結果.【詳解】《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,這5部專著中有3部產生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現象的發生.11、D【解析】

畫出約束條件的可行域,利用目標函數的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區域,如圖示:如圖點坐標分別為,目標函數的幾何意義為,可行域內點與坐標原點的距離的平方,由圖可知到原點的距離最大,故.故選:D【點睛】本題考查了簡單的線性規劃問題,考查數形結合思想,屬于中檔題.12、B【解析】

初始:,,第一次循環:,,繼續循環;第二次循環:,,此時,滿足條件,結束循環,所以判斷框內填入的條件可以是,所以正整數的最小值是3,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由數量積的運算律求得,再由數量積的定義可得結論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數量積的定義與運算律是解題關鍵.14、【解析】由題意得,解得定義域為.15、①②④【解析】

由函數,對選項逐個驗證即得答案.【詳解】函數,是周期函數,最小正周期為,故①正確;當或時,有最大值或最小值,此時或,即或,即.的對稱軸方程為,,故②正確;當時,,此時在上單調遞減,在上單調遞增,在區間上不是增函數,故③錯誤;作出函數的部分圖象,如圖所示方程在區間有6個根,故④正確.故答案為:①②④.【點睛】本題考查三角恒等變換,考查三角函數的性質,屬于中檔題.16、【解析】

首先利用絕對值的意義去掉絕對值符號,之后再結合后邊的函數解析式,對照函數值等于2的時候對應的自變量的值,從而得到分段函數的分界點,從而得到相應的等量關系式,求得參數的值.【詳解】根據題意可知,可以發現當或時是分界點,結合函數的解析式,可以判斷0不可能,所以只能是是分界點,故,解得,故答案是.【點睛】本題主要考查分段函數的性質,二次函數的性質,函數最值的求解等知識,意在考查學生的轉化能力和計算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)最小值為,此時;(2)見解析【解析】

(1)由已知得,法一:,,根據二次函數的最值可求得;法二:運用基本不等式構造,可得最值;法三:運用柯西不等式得:,可得最值;(2)由絕對值不等式得,,又,可得證.【詳解】(1),法一:,,的最小值為,此時;法二:,,即的最小值為,此時;法三:由柯西不等式得:,,即的最小值為,此時;(2),,又,.【點睛】本題考查運用基本不等式,柯西不等式,絕對值不等式進行不等式的證明和求解函數的最值,屬于中檔題.18、(1)(2)【解析】

(1)為假,則為真,求導,利用導函數研究函數有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調遞增,當,,單調遞減,作出函數圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數滿足,則;若假真,則實數滿足,無解;綜上所述,實數的取值范圍為.【點睛】本題考查根據全(特)稱命題的真假求參數的問題.其思路:與全稱命題或特稱命題真假有關的參數取值范圍問題的本質是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉化思想將條件合理轉化,得到關于參數的方程或不等式(組),再通過解方程或不等式(組)求出參數的值或范圍.19、(1)(2)①,,②72【解析】

(1)將每組數據的組中值乘以對應的頻率,然后再將結果相加即可得到亮燈時長的平均數,將此平均數除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據條件計算出的取值范圍,然后根據并結合正態分布概率的對稱性,求解出在滿足取值范圍下對應的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據頻數分布表求解平均數、幾何概型(長度模型)、二項分布的均值與方差、正態分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態分布中的概率,一定要活用正態分布圖象的對稱性對應概率的對稱性.20、另一個特征值為,對應的一個特征向量【解析】

根據特征多項式的一個零點為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論