2023-2024學年河北省邯鄲市永區中考數學模擬預測題含解析_第1頁
2023-2024學年河北省邯鄲市永區中考數學模擬預測題含解析_第2頁
2023-2024學年河北省邯鄲市永區中考數學模擬預測題含解析_第3頁
2023-2024學年河北省邯鄲市永區中考數學模擬預測題含解析_第4頁
2023-2024學年河北省邯鄲市永區中考數學模擬預測題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年河北省邯鄲市永區中考數學模擬預測題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點A所表示的數的絕對值是()A.3 B.﹣3 C. D.2.矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.3.如圖,在平面直角坐標系中,△OAB的頂點A在x軸正半軸上,OC是△OAB的中線,點B、C在反比例函數y=(x>0)的圖象上,則△OAB的面積等于()A.2 B.3 C.4 D.64.一元二次方程mx2+mx﹣=0有兩個相等實數根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.25.對于反比例函數y=﹣2xA.圖象分布在第二、四象限B.當x>0時,y隨x的增大而增大C.圖象經過點(1,﹣2)D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y26.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數是()A.70° B.50° C.40° D.35°7.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現故障后停車維修,修好后以2a千米/時的速度繼續行駛;乙車在甲車出發2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數為()A.0個 B.1個 C.2個 D.3個8.如圖,比例規是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm9.平面上直線a、c與b相交(數據如圖),當直線c繞點O旋轉某一角度時與a平行,則旋轉的最小度數是()A.60° B.50° C.40° D.30°10.某居委會組織兩個檢查組,分別對“垃圾分類”和“違規停車”的情況進行抽查.各組隨機抽取轄區內某三個小區中的一個進行檢查,則兩個組恰好抽到同一個小區的概率是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=1.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F,則EF長為________.12.和平中學自行車停車棚頂部的剖面如圖所示,已知AB=16m,半徑OA=10m,高度CD為____m.13.如圖,△ABC與△DEF位似,點O為位似中心,若AC=3DF,則OE:EB=_____.14.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結論的個數是______.15.按照神舟號飛船環境控制與生命保障分系統的設計指標,“神舟”五號飛船返回艙的溫度為21℃±4℃.該返回艙的最高溫度為________℃.16.在計算器上,按照下面如圖的程序進行操作:如表中的x與y分別是輸入的6個數及相應的計算結果:上面操作程序中所按的第三個鍵和第四個鍵分別是_____、_____.x﹣3﹣2﹣1012y﹣5﹣3﹣113517.已知點(﹣1,m)、(2,n)在二次函數y=ax2﹣2ax﹣1的圖象上,如果m>n,那么a____0(用“>”或“<”連接).三、解答題(共7小題,滿分69分)18.(10分)我們已經知道一些特殊的勾股數,如三連續正整數中的勾股數:3、4、5;三個連續的偶數中的勾股數6、8、10;事實上,勾股數的正整數倍仍然是勾股數.另外利用一些構成勾股數的公式也可以寫出許多勾股數,畢達哥拉斯學派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n為正整數)是一組勾股數,請證明滿足以上公式的a、b、c的數是一組勾股數.然而,世界上第一次給出的勾股數公式,收集在我國古代的著名數學著作《九章算術》中,書中提到:當a=(m2﹣n2),b=mn,c=(m2+n2)(m、n為正整數,m>n時,a、b、c構成一組勾股數;利用上述結論,解決如下問題:已知某直角三角形的邊長滿足上述勾股數,其中一邊長為37,且n=5,求該直角三角形另兩邊的長.19.(5分)某學校2017年在某商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數量是購買乙種足球數量的2倍.且購買一個乙種足球比購買一個甲種足球多花20元;(1)求購買一個甲種足球、一個乙種足球各需多少元;(2)2018年這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%.如果此次購買甲、乙兩種足球的總費用不超過2910元,那么這所學校最多可購買多少個乙種足球?20.(8分)已知頂點為A的拋物線y=a(x-)2-2經過點B(-,2),點C(,2).(1)求拋物線的表達式;(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN′,若點N′落在x軸上,請直接寫出Q點的坐標.21.(10分)計算:(﹣1)4﹣2tan60°+.22.(10分)如圖,在等邊中,,點D是線段BC上的一動點,連接AD,過點D作,垂足為D,交射線AC與點設BD為xcm,CE為ycm.小聰根據學習函數的經驗,對函數y隨自變量x的變化而變化的規律進行了探究.下面是小聰的探究過程,請補充完整:通過取點、畫圖、測量,得到了x與y的幾組值,如下表:012345___00說明:補全表格上相關數值保留一位小數建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象;結合畫出的函數圖象,解決問題:當線段BD是線段CE長的2倍時,BD的長度約為_____cm.23.(12分)如圖,AB、AC分別是⊙O的直徑和弦,OD⊥AC于點D.過點A作⊙O的切線與OD的延長線交于點P,PC、AB的延長線交于點F.(1)求證:PC是⊙O的切線;(2)若∠ABC=60°,AB=10,求線段CF的長.24.(14分)觀察下列各式:①②③由此歸納出一般規律__________.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據負數的絕對值是其相反數解答即可.【詳解】|-3|=3,故選A.【點睛】此題考查絕對值問題,關鍵是根據負數的絕對值是其相反數解答.2、C【解析】分析:延長GH交AD于點P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點睛:本題主要考查矩形的性質,解題的關鍵是掌握全等三角形的判定與性質、矩形的性質、勾股定理等知識點.3、B【解析】

作BD⊥x軸于D,CE⊥x軸于E,∴BD∥CE,∴,∵OC是△OAB的中線,∴,設CE=x,則BD=2x,∴C的橫坐標為,B的橫坐標為,∴OD=,OE=,∴DE=OE-OD=﹣=,∴AE=DE=,∴OA=OE+AE=,∴S△OAB=OA?BD=×=1.故選B.點睛:本題是反比例函數與幾何的綜合題,熟知反比例函數的圖象上點的特征和相似三角形的判定和性質是解題的關鍵.4、C【解析】

由方程有兩個相等的實數根,得到根的判別式等于0,求出m的值,經檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數根;根的判別式的值等于0,方程有兩個相等的實數根;根的判別式的值小于0,方程沒有實數根.5、D【解析】

根據反比例函數圖象的性質對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當x>0時,y隨x的增大而增大,故本選項正確;C.∵-2D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.【點睛】考查了反比例函數的圖象與性質,掌握反比例函數的性質是解題的關鍵.6、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數.詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發,把這個角分成相等的兩個角的射線叫做這個角的平分線.性質:若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.7、A【解析】解:①由函數圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時間為1小時;故②正確,③如圖:∵甲車維修的時間是1小時,∴B(4,120).∵乙在甲出發2小時后勻速前往B地,比甲早30分鐘到達.∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時間為:240÷80=3,∴F(8,0).設BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當y1=y2時,80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時t的值為5.2小時,故弄③正確,④當t=3時,甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.8、B【解析】【分析】由已知可證△ABO∽CDO,故,即.【詳解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故選B【點睛】本題考核知識點:相似三角形.解題關鍵點:熟記相似三角形的判定和性質.9、C【解析】

先根據平角的定義求出∠1的度數,再由平行線的性質即可得出結論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點睛】本題考查的是平行線的性質,用到的知識點為:兩直線平行,同旁內角互補.10、C【解析】分析:將三個小區分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個小區分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結果,其中兩個組恰好抽到同一個小區的結果有3種,所以兩個組恰好抽到同一個小區的概率為.故選:C.點睛:此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.二、填空題(共7小題,每小題3分,滿分21分)11、6或2.【解析】試題分析:根據P點的不同位置,此題分兩種情況計算:①點P在CD上;②點P在AD上.①點P在CD上時,如圖:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四邊形PFBE是鄰邊相等的矩形即正方形,EF過點C,∵BF=BC=6,∴由勾股定理求得EF=;②點P在AD上時,如圖:先建立相似三角形,過E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(兩角對應相等,兩三角形相似),∴對應線段成比例:,代入相應數值:,∴EF=2.綜上所述:EF長為6或2.考點:翻折變換(折疊問題).12、1.【解析】

由CD⊥AB,根據垂徑定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理計算出OD,則通過CD=OC?OD求出CD.【詳解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半徑OA=10m,∴OD==6,∴CD=OC﹣OD=10﹣6=1(m).故答案為1.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的弧.也考查了切線的性質定理以及勾股定理.13、1:2【解析】

△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,位似圖形的對應頂點的連線平行或共線.14、①②③④.【解析】

由正方形的性質得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;

證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;

由等腰直角三角形的性質和矩形的性質得出∠ABC=∠ABF=45°,③正確;

證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+∠FAG=90°,

∵FG⊥CA,

∴∠GAF+∠AFG=90°,

∴∠CAD=∠AFG,

在△FGA和△ACD中,,

∴△FGA≌△ACD(AAS),

∴AC=FG,①正確;

∵BC=AC,

∴FG=BC,

∵∠ACB=90°,FG⊥CA,

∴FG∥BC,

∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;

∵CA=CB,∠C=∠CBF=90°,

∴∠ABC=∠ABF=45°,③正確;

∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,

∴△ACD∽△FEQ,

∴AC:AD=FE:FQ,

∴AD?FE=AD2=FQ?AC,④正確;

故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質、全等三角形的判定與性質、正方形的性質、矩形的判定與性質、等腰直角三角形的性質;熟練掌握正方形的性質,證明三角形全等和三角形相似是解決問題的關鍵.15、17℃.【解析】

根據返回艙的溫度為21℃±4℃,可知最高溫度為21℃+4℃;最低溫度為21℃-4℃.【詳解】解:返回艙的最高溫度為:21+4=25℃;返回艙的最低溫度為:21-4=17℃;故答案為:17℃.【點睛】本題考查正數和負數的意義.±4℃指的是比21℃高于4℃或低于4℃.16、+,1【解析】

根據表格中數據求出x、y之間的關系,即可得出答案.【詳解】解:根據表格中數據分析可得:x、y之間的關系為:y=2x+1,則按的第三個鍵和第四個鍵應是“+”“1”.故答案為+,1.【點睛】此題考查了有理數的運算,要求同學們能熟練應用計算器,會用科學記算器進行計算.17、>;【解析】

∵=a(x-1)2-a-1,∴拋物線對稱軸為:x=1,由拋物線的對稱性,點(-1,m)、(2,n)在二次函數的圖像上,∵|?1?1|>|2?1|,且m>n,∴a>0.故答案為>三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)當n=5時,一邊長為37的直角三角形另兩邊的長分別為12,1.【解析】

(1)根據題意只需要證明a2+b2=c2,即可解答(2)根據題意將n=5代入得到a=(m2﹣52),b=5m,c=(m2+25),再將直角三角形的一邊長為37,分別分三種情況代入a=(m2﹣52),b=5m,c=(m2+25),即可解答【詳解】(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n為正整數,∴a、b、c是一組勾股數;(2)解:∵n=5∴a=(m2﹣52),b=5m,c=(m2+25),∵直角三角形的一邊長為37,∴分三種情況討論,①當a=37時,(m2﹣52)=37,解得m=±3(不合題意,舍去)②當y=37時,5m=37,解得m=(不合題意舍去);③當z=37時,37=(m2+n2),解得m=±7,∵m>n>0,m、n是互質的奇數,∴m=7,把m=7代入①②得,x=12,y=1.綜上所述:當n=5時,一邊長為37的直角三角形另兩邊的長分別為12,1.【點睛】此題考查了勾股數和勾股定理,熟練掌握勾股定理是解題關鍵19、(1)購買一個甲種足球需要50元,購買一個乙種籃球需要1元(2)這所學校最多可購買2個乙種足球【解析】

(1)根據題意可以列出相應的分式方程,從而可以求得購買一個甲種足球、一個乙種足球各需多少元;(2)根據題意可以列出相應的不等式,從而可以求得這所學校最多可購買多少個乙種足球.【詳解】(1)設購買一個甲種足球需要x元,則購買一個乙種籃球需要(x+2)元,根據題意得:,解得:x=50,經檢驗,x=50是原方程的解,且符合題意,∴x+2=1.答:購買一個甲種足球需要50元,購買一個乙種籃球需要1元.(2)設可購買m個乙種足球,則購買(50﹣m)個甲種足球,根據題意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,解得:m≤2.答:這所學校最多可購買2個乙種足球.【點睛】本題考查分式方程的應用,一元一次不等式的應用,解答此類問題的關鍵是明確題意,列出相應的分式方程和一元一次不等式,注意分式方程要檢驗,問題(2)要與實際相聯系.20、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點Q的坐標為(-,)或(-,2)或(,2).【解析】

(1)將點B坐標代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據此證△OPE∽△FAE得===,即OP=FA,設點P(t,-2t-1),列出關于t的方程解之可得;(3)分點Q在AB上運動、點Q在BC上運動且Q在y軸左側、點Q在BC上運動且點Q在y軸右側這三種情況分類討論即可得.【詳解】解:(1)把點B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設直線AB表達式為y=kx+b,代入點A,B的坐標得,解得,∴直線AB的表達式為y=-2x-1,易求E(0,-1),F(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,設點P(t,-2t-1),則,解得t1=-,t2=-,由對稱性知,當t1=-時,也滿足∠OPM=∠MAF,∴t1=-,t2=-都滿足條件,∵△POE的面積=OE·|t|,∴△POE的面積為或;(3)如圖,若點Q在AB上運動,過N′作直線RS∥y軸,交QR于點R,交NE的延長線于點S,設Q(a,-2a-1),則NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如圖,若點Q在BC上運動,且Q在y軸左側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點S.設NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如圖,若點Q在BC上運動,且點Q在y軸右側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論