




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年廣東省深圳市羅湖區文錦中學中考數學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在矩形ABCD中,AB=2,BC=1.若點E是邊CD的中點,連接AE,過點B作BF⊥AE交AE于點F,則BF的長為()A. B. C. D.2.(2016福建省莆田市)如圖,OP是∠AOB的平分線,點C,D分別在角的兩邊OA,OB上,添加下列條件,不能判定△POC≌△POD的選項是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD3.如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F,若∠B=52°,∠DAE=20°,則∠FED′的度數為()A.40° B.36° C.50° D.45°4.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是()A.6 B.8 C.10 D.125.在實數﹣,0.21,,,,0.20202中,無理數的個數為()A.1 B.2 C.3 D.46.如圖,數軸A、B上兩點分別對應實數a、b,則下列結論正確的是()A.a+b>0 B.ab>0 C.1a+7.一、單選題在反比例函數的圖象中,陰影部分的面積不等于4的是()A. B. C. D.8.一個圓錐的底面半徑為,母線長為6,則此圓錐的側面展開圖的圓心角是()A.180° B.150° C.120° D.90°9.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.10.如圖,點C、D是線段AB上的兩點,點D是線段AC的中點.若AB=10cm,BC=4cm,則線段DB的長等于()A.2cm B.3cm C.6cm D.7cm11.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長為()A. B. C. D.12.已知圓內接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.觀察圖形,根據圖形面積的關系,不需要連其他的線,便可以得到一個用來分解因式的公式,這個公式是________________14.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.15.將數軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數為x﹣3,點B表示的數為2x+1,點C表示的數為﹣4,若將△ABC向右滾動,則x的值等于_____,數字2012對應的點將與△ABC的頂點_____重合.16.大連市內與莊河兩地之間的距離是160千米,若汽車以平均每小時80千米的速度從大連市內開往莊河,則汽車距莊河的路程y(千米)與行駛的時間x(小時)之間的函數關系式為_____.17.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.18.拋物線y=(x+1)2-2的頂點坐標是______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,求下列事件的概率:兩次取出的小球標號相同;兩次取出的小球標號的和等于4.20.(6分)據某省商務廳最新消息,2018年第一季度該省企業對“一帶一路”沿線國家的投資額為10億美元,第三季度的投資額增加到了14.4億美元.求該省第二、三季度投資額的平均增長率.21.(6分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖,請根據統計圖中所提供的信息解答下列問題:接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統計圖;若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.22.(8分)(8分)如圖,在平面直角坐標系中,O為原點,直線AB分別與x軸、y軸交于B和A,與反比例函數的圖象交于C、D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求直線AB和反比例函數的解析式;(1)求△OCD的面積.23.(8分)如圖,把兩個邊長相等的等邊△ABC和△ACD拼成菱形ABCD,點E、F分別是CB、DC延長上的動點,且始終保持BE=CF,連結AE、AF、EF.求證:AEF是等邊三角形.24.(10分)如圖,AB是⊙O的直徑,點C為⊙O上一點,CN為⊙O的切線,OM⊥AB于點O,分別交AC、CN于D、M兩點.求證:MD=MC;若⊙O的半徑為5,AC=4,求MC的長.25.(10分)如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.(1)判斷直線l與⊙O的位置關系,并說明理由;(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長.26.(12分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.27.(12分)為了了解初一年級學生每學期參加綜合實踐活動的情況,某區教育行政部門隨機抽樣調查了部分初一學生一個學期參加綜合實踐活動的天數,并用得到的數據繪制了統計圖①和圖②,請根據圖中提供的信息,回答下列問題:(I)本次隨機抽樣調查的學生人數為,圖①中的m的值為;(II)求本次抽樣調查獲取的樣本數據的眾數、中位數和平均數;(III)若該區初一年級共有學生2500人,請估計該區初一年級這個學期參加綜合實踐活動的天數大于4天的學生人數.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據S△ABE=S矩形ABCD=1=?AE?BF,先求出AE,再求出BF即可.【詳解】如圖,連接BE.∵四邊形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=?AE?BF,∴BF=.故選:B.【點睛】本題考查矩形的性質、勾股定理、三角形的面積公式等知識,解題的關鍵是靈活運用所學知識解決問題,學會用面積法解決有關線段問題,屬于中考常考題型.2、D【解析】試題分析:對于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根據AAS判定定理可以判定△POC≌△POD;對于BOC=OD,根據SAS判定定理可以判定△POC≌△POD;對于C,∠OPC=∠OPD,根據ASA判定定理可以判定△POC≌△POD;,對于D,PC=PD,無法判定△POC≌△POD,故選D.考點:角平分線的性質;全等三角形的判定.3、B【解析】
由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,與三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大小.【詳解】∵四邊形ABCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.4、B【解析】分析:過點D作DE⊥AB于E,先求出CD的長,再根據角平分線上的點到角的兩邊的距離相等可得DE=CD=2,然后根據三角形的面積公式列式計算即可得解.詳解:如圖,過點D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分線,∴DE=CD=2,∴△ABD的面積故選B.點睛:考查角平分線的性質,角平分線上的點到角兩邊的距離相等.5、C【解析】在實數﹣,0.21,,,,0.20202中,根據無理數的定義可得其中無理數有﹣,,,共三個.故選C.6、C【解析】
本題要先觀察a,b在數軸上的位置,得b<-1<0<a<1,然后對四個選項逐一分析.【詳解】A、因為b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項A錯誤;B、因為b<0<a,所以ab<0,故選項B錯誤;C、因為b<-1<0<a<1,所以1a+1D、因為b<-1<0<a<1,所以1a-1故選C.【點睛】本題考查了實數與數軸的對應關系,數軸上右邊的數總是大于左邊的數.7、B【解析】
根據反比例函數中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經常考查的一個知識點;這里體現了數形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.8、B【解析】
解:,解得n=150°.故選B.考點:弧長的計算.9、D【解析】
根據菱形的性質得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質,也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.10、D【解析】【分析】先求AC,再根據點D是線段AC的中點,求出CD,再求BD.【詳解】因為,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因為,點D是線段AC的中點,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故選D【點睛】本題考核知識點:線段的中點,和差.解題關鍵點:利用線段的中點求出線段長度.11、B【解析】
連接BF,由折疊可知AE垂直平分BF,根據勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【點睛】本題考查的是翻折變換的性質、矩形的性質及勾股定理的應用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.12、B【解析】
根據題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,由三角形重心的性質得AD=3x,利用銳角三角函數表示出BD的長,由垂徑定理表示出BC的長,然后根據面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質,垂徑定理,銳角三角函數,面積法求線段的長,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】由圖形可得:14、有兩個不相等的實數根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數根.故答案為有兩個不相等的實數根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.15、﹣1C.【解析】∵將數軸按如圖所示從某一點開始折出一個等邊三角形ABC,設點A表示的數為x﹣1,點B表示的數為2x+1,點C表示的數為﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的數為:x﹣1=﹣1﹣1=﹣6,點B表示的數為:2x+1=2×(﹣1)+1=﹣5,即等邊三角形ABC邊長為1,數字2012對應的點與﹣4的距離為:2012+4=2016,∵2016÷1=672,C從出發到2012點滾動672周,∴數字2012對應的點將與△ABC的頂點C重合.故答案為﹣1,C.點睛:此題主要考查了等邊三角形的性質,實數與數軸,一元一次方程等知識,本題將數與式的考查有機地融入“圖形與幾何”中,滲透“數形結合思想”、“方程思想”等,也是一道較優秀的操作活動型問題.16、y=160﹣80x(0≤x≤2)【解析】
根據汽車距莊河的路程y(千米)=原來兩地的距離﹣汽車行駛的距離,解答即可.【詳解】解:∵汽車的速度是平均每小時80千米,∴它行駛x小時走過的路程是80x,∴汽車距莊河的路程y=160﹣80x(0≤x≤2),故答案為:y=160﹣80x(0≤x≤2).【點睛】本題考查了根據實際問題確定一次函數的解析式,找到所求量的等量關系是解題的關鍵.17、【解析】
設AC=x,則BC=2-x,根據AC2=BC·AB列方程求解即可.【詳解】解:設AC=x,則BC=2-x,根據AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點睛】本題考查了黃金分割的應用,關鍵是明確黃金分割所涉及的線段的比.18、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(2)【解析】
試題分析:首先根據題意進行列表,然后求出各事件的概率.試題解析:(1)P(兩次取得小球的標號相同)=;(2)P(兩次取得小球的標號的和等于4)=.考點:概率的計算.20、第二、三季度的平均增長率為20%.【解析】
設增長率為x,則第二季度的投資額為10(1+x)萬元,第三季度的投資額為10(1+x)2萬元,由第三季度投資額為10(1+x)2=14.4萬元建立方程求出其解即可.【詳解】設該省第二、三季度投資額的平均增長率為x,由題意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增長率為20%.【點睛】本題考查了增長率問題的數量關系的運用,一元二次方程的解法的運用,解答時根據第三季度投資額為10(1+x)2=14.4建立方程是關鍵.21、(1)60,90;(2)見解析;(3)300人【解析】
(1)由了解很少的有30人,占50%,可求得接受問卷調查的學生數,繼而求得扇形統計圖中“基本了解”部分所對應扇形的圓心角;(2)由(1)可求得了解的人數,繼而補全條形統計圖;(3)利用樣本估計總體的方法,即可求得答案.【詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調查的學生共有:30÷50%=60(人);∴扇形統計圖中“基本了解”部分所對應扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統計圖得:(3)根據題意得:900×=300(人),則估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數為300人.【點睛】本題考查了條形統計圖與扇形統計圖,解題的關鍵是熟練的掌握條形統計圖與扇形統計圖的相關知識點.22、(1),;(1)2.【解析】試題分析:(1)先求出A、B、C點坐標,用待定系數法求出直線AB和反比例的函數解析式;(1)聯立一次函數的解析式和反比例的函數解析式可得交點D的坐標,從而根據三角形面積公式求解.試題解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x軸于點E,tan∠ABO==,∴OA=1,CE=3,∴點A的坐標為(0,1)、點B的坐標為C(4,0)、點C的坐標為(﹣1,3),設直線AB的解析式為,則,解得:,故直線AB的解析式為,設反比例函數的解析式為(),將點C的坐標代入,得3=,∴m=﹣3.∴該反比例函數的解析式為;(1)聯立反比例函數的解析式和直線AB的解析式可得,可得交點D的坐標為(3,﹣1),則△BOD的面積=4×1÷1=1,△BOD的面積=4×3÷1=3,故△OCD的面積為1+3=2.考點:反比例函數與一次函數的交點問題.23、見解析【解析】分析:由等邊三角形的性質即可得出∠ABE=∠ACF,由全等三角形的性質即可得出結論.詳解:證明:∵△ABC和△ACD均為等邊三角形∴AB=AC,∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°,∵BE=CF,∴△ABE≌△ACF,∴AE=AF,∴∠EAB=∠FAC,∴∠EAF=∠BAC=60°,∴△AEF是等邊三角形.點睛:此題是四邊形綜合題,主要考查了等邊三角形的性質和全等三角形的判定和性質,直角三角形的性質,相似三角形的判定和性質,解題關鍵是判斷出△ABE≌△ACF.24、(1)證明見解析;(2)MC=.【解析】【分析】(1)連接OC,利用切線的性質證明即可;(2)根據相似三角形的判定和性質以及勾股定理解答即可.【詳解】(1)連接OC,∵CN為⊙O的切線,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由題意可知AB=5×2=10,AC=4,∵AB是⊙O的直徑,∴∠ACB=90°,∴BC==2,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,設MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.【點睛】本題考查了切線的判定和性質、相似三角形的判定和性質、勾股定理等知識,準確添加輔助線,正確尋找相似三角形是解決問題的關鍵.25、(1)直線l與⊙O相切;(2)證明見解析;(3)214【解析】試題分析:(1)連接OE、OB、OC.由題意可證明BE=(2)先由角平分線的定義可知∠ABF=∠CBF,然后再證明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依據等角對等邊證明BE=EF即可;(3)先求得BE的長,然后證明△BED∽△AEB,由相似三角形的性質可求得AE的長,于是可得到AF的長.試題解析:(1)直線l與⊙O相切.理由如下:如圖1所示:連接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴BE=∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直線l與⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年城市規劃與設計開發試題及答案
- SPA 中心服務投訴回訪考核
- 2025屆湖北省宜昌西陵區五校聯考七下英語期中檢測試題含答案
- 我的教育故事-幼兒教育篇
- 2025年廣安貨運從業資格模擬考試
- 浙江省諸暨市浬浦鎮中學2025屆七年級英語第二學期期中質量檢測模擬試題含答案
- 員工基本信息及在職工作事實認定書(6篇)
- 心中的愿望想象作文(8篇)
- 在校學生實習經歷與成果證明(7篇)
- 快手培訓專員競聘
- 大麻制品項目建議書
- 楚雄彝族自治州人民醫院死亡通知暨尸檢建議書
- 建筑垃圾清運投標方案(技術標)
- FREE高考英語核心詞匯1783
- 第4章-汽油機后處理凈化技術課件
- 績效專員崗位月度KPI績效考核表
- 統計模型與統計實驗-南京財經大學中國大學mooc課后章節答案期末考試題庫2023年
- 小學語文部編版五年級下冊《修改語段》專項練習
- 2022年07月湖南郴電國際發展股份有限公司招聘105名新員工筆試題庫含答案解析
- 三年級綜合實踐制作校園提示牌
- 《持輕物擲準》教案
評論
0/150
提交評論