【首發】河北省衡水市棗強縣2024屆中考數學適應性模擬試題含解析_第1頁
【首發】河北省衡水市棗強縣2024屆中考數學適應性模擬試題含解析_第2頁
【首發】河北省衡水市棗強縣2024屆中考數學適應性模擬試題含解析_第3頁
【首發】河北省衡水市棗強縣2024屆中考數學適應性模擬試題含解析_第4頁
【首發】河北省衡水市棗強縣2024屆中考數學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

【首發】河北省衡水市棗強縣2024屆中考數學適應性模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.62.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t53.在剛過去的2017年,我國整體經濟實力躍上了一個新臺階,城鎮新增就業1351萬人,數據“1351萬”用科學記數法表示為()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1084.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π5.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣56.如圖,反比例函數(x>0)的圖象經過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.47.如圖,在正方形ABCD中,E為AB的中點,G,F分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.58.4的平方根是()A.2 B.±2 C.8 D.±89.為考察兩名實習工人的工作情況,質檢部將他們工作第一周每天生產合格產品的個數整理成甲,乙兩組數據,如下表:甲26778乙23488關于以上數據,說法正確的是()A.甲、乙的眾數相同 B.甲、乙的中位數相同C.甲的平均數小于乙的平均數 D.甲的方差小于乙的方差10.某居委會組織兩個檢查組,分別對“垃圾分類”和“違規停車”的情況進行抽查.各組隨機抽取轄區內某三個小區中的一個進行檢查,則兩個組恰好抽到同一個小區的概率是()A. B. C. D.11.下列運算結果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a212.在數軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,正方形ABCD的邊長為,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點F,則EF的長是__________.14.化簡:3215.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.16.某一時刻,測得一根高1.5m的竹竿在陽光下的影長為2.5m.同時測得旗桿在陽光下的影長為30m,則旗桿的高為__________m.17.某市居民用電價格如表所示:用電量不超過a千瓦時超過a千瓦時的部分單價(元/千瓦時)0.50.6小芳家二月份用電200千瓦時,交電費105元,則a=______.18.如圖,轉盤中6個扇形的面積相等,任意轉動轉盤1次,當轉盤停止轉動時,指針指向的數小于5的概率為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.20.(6分)已知PA與⊙O相切于點A,B、C是⊙O上的兩點(1)如圖①,PB與⊙O相切于點B,AC是⊙O的直徑若∠BAC=25°;求∠P的大小(2)如圖②,PB與⊙O相交于點D,且PD=DB,若∠ACB=90°,求∠P的大小21.(6分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數進行調查統計.現從該校隨機抽取名學生作為樣本,采用問卷調查的方法收集數據(參與問卷調查的每名學生只能選擇其中一項).并根據調查得到的數據繪制成了如圖所示的兩幅不完整的統計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數;若調查到喜愛體育活動的4名學生中有3名男生和1名女生,現從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.22.(8分)已知一個二次函數的圖象經過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數解析式以及點C的坐標.23.(8分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.求y與x之間的函數關系式;直接寫出當x>0時,不等式x+b>的解集;若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.24.(10分)一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量y(件)與銷售價x(元/件)之間的函數關系如圖所示.(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?25.(10分)為響應“學雷鋒、樹新風、做文明中學生”號召,某校開展了志愿者服務活動,活動項目有“戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區服務”等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調查,結果發現,被調查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據調查結果繪制了如圖所示不完整的折線統計圖和扇形統計圖.被隨機抽取的學生共有多少名?在扇形統計圖中,求活動數為3項的學生所對應的扇形圓心角的度數,并補全折線統計圖;該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?26.(12分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數y=的圖象經過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經過的路徑長.27.(12分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.2、D【解析】選項A,根據同底數冪的乘法可得原式=t10;選項B,不是同類項,不能合并;選項C,根據同底數冪的乘法可得原式=t7;選項D,根據同底數冪的乘法可得原式=t5,四個選項中只有選項D正確,故選D.3、B【解析】

根據科學記數法進行解答.【詳解】1315萬即13510000,用科學記數法表示為1.351×107.故選擇B.【點睛】本題主要考查科學記數法,科學記數法表示數的標準形式是a×10n(1≤│a│<10且n為整數).4、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.5、B【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.6、C【解析】

本題可從反比例函數圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關系,列出等式求出k值.【詳解】由題意得:E、M、D位于反比例函數圖象上,則,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|.又∵M為矩形ABCO對角線的交點,∴S矩形ABCO=4S□ONMG=4|k|,∵函數圖象在第一象限,k>0,∴.解得:k=1.故選C.【點睛】本題考查反比例函數系數k的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|,本知識點是中考的重要考點,同學們應高度關注.7、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質的應用,利用勾股定理即可得解,解題的關鍵是證明△AEG∽△BFE.8、B【解析】

依據平方根的定義求解即可.【詳解】∵(±1)1=4,∴4的平方根是±1.故選B.【點睛】本題主要考查的是平方根的定義,掌握平方根的定義是解題的關鍵.9、D【解析】

分別根據眾數、中位數、平均數、方差的定義進行求解后進行判斷即可得.【詳解】甲:數據7出現了2次,次數最多,所以眾數為7,排序后最中間的數是7,所以中位數是7,,=4.4,乙:數據8出現了2次,次數最多,所以眾數為8,排序后最中間的數是4,所以中位數是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數、中位數、平均數、方差,熟練掌握相關定義及求解方法是解題的關鍵.10、C【解析】分析:將三個小區分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個小區分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結果,其中兩個組恰好抽到同一個小區的結果有3種,所以兩個組恰好抽到同一個小區的概率為.故選:C.點睛:此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.11、C【解析】

根據多項式除以單項式法則、同底數冪的乘法、積的乘方與冪的乘方及合并同類項法則計算可得.【詳解】A、(x3-x2+x)÷x=x2-x+1,此選項計算錯誤;B、(-a2)?a3=-a5,此選項計算錯誤;C、(-2x2)3=-8x6,此選項計算正確;D、4a2-(2a)2=4a2-4a2=0,此選項計算錯誤.故選:C.【點睛】本題主要考查整式的運算,解題的關鍵是掌握多項式除以單項式法則、同底數冪的乘法、積的乘方與冪的乘方及合并同類項法則.12、A【解析】根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得不等式解集,然后得出在數軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】

設EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【詳解】設EF=x,

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,

∴BD=AB=4+4,EF=BF=x,

∴BE=x,

∵∠BAE=22.5°,

∴∠DAE=90°-22.5°=67.5°,

∴∠AED=180°-45°-67.5°=67.5°,

∴∠AED=∠DAE,

∴AD=ED,

∴BD=BE+ED=x+4+2=4+4,

解得:x=2,

即EF=2.14、-6【解析】

根據二次根式的乘法運算法則以及絕對值的性質和二次根式的化簡分別化簡整理得出即可:【詳解】32故答案為-615、1.【解析】過點B作BE⊥x軸于點E,根據D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.16、1.【解析】分析:根據同一時刻物高與影長成比例,列出比例式再代入數據計算即可.詳解:∵==,解得:旗桿的高度=×30=1.故答案為1.點睛:本題考查了相似三角形在測量高度時的應用,解題時關鍵是找出相似的三角形,然后根據對應邊成比例列出方程,建立數學模型來解決問題.17、150【解析】

根據題意可得等量關系:不超過a千瓦時的電費+超過a千瓦時的電費=105元;根據等量關系列出方程,解出a的值即可.【詳解】∵0.5×200=100<105,∴a<200.由題意得:0.5a+0.6(200-a)=105,解得:a=150.故答案為:150【點睛】此題主要考查了一元一次方程的應用,關鍵是正確找出題目中的等量關系,列出方程.18、【解析】試題解析:∵共6個數,小于5的有4個,∴P(小于5)==.故答案為.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析【解析】

根據CE∥DF,可得∠ECA=∠FDB,再利用SAS證明△ACE≌△FDB,得出對應邊相等即可.【詳解】解:∵CE∥DF

∴∠ECA=∠FDB,在△ECA和△FDB中∴△ECA≌△FDB,

∴AE=FB.【點睛】本題主要考查全等三角形的判定與性質和平行線的性質;熟練掌握平行線的性質,證明三角形全等是解決問題的關鍵.20、(1)∠P=50°;(2)∠P=45°.【解析】

(1)連接OB,根據切線長定理得到PA=PB,∠PAO=∠PBO=90°,根據三角形內角和定理計算即可;

(2)連接AB、AD,根據圓周角定理得到∠ADB=90°,根據切線的性質得到AB⊥PA,根據等腰直角三角形的性質解答.【詳解】解:(1)如圖①,連接OB.∵PA、PB與⊙O相切于A、B點,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如圖②,連接AB、AD,∵∠ACB=90°,∴AB是的直徑,∠ADB=90·∵PD=DB,∴PA=AB.∵PA與⊙O相切于A點∴AB⊥PA,∴∠P=∠ABP=45°.【點睛】本題考查的是切線的性質、圓周角定理,掌握圓的切線垂直于過切點的半徑是解題的關鍵.21、(1)50;(2)240;(3).【解析】

用喜愛社會實踐的人數除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數,然后用1200乘以樣本中喜愛看電視人數所占的百分比,即可估計該校喜愛看電視的學生人數;畫樹狀圖展示12種等可能的結果數,再找出恰好抽到2名男生的結果數,然后根據概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數為(人,,所以估計該校喜愛看電視的學生人數為240人;(3)畫樹狀圖為:共有12種等可能的結果數,其中恰好抽到2名男生的結果數為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率,也考查了統計圖.22、y=2x2+x﹣3,C點坐標為(﹣,0)或(2,7)【解析】

設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入可求出解析式,進而求出點C的坐標即可.【詳解】設拋物線的解析式為y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴拋物線的解析式為y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C點坐標為(﹣,0)或(2,7).【點睛】本題考查了用待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.23、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數關系式;(2)依據A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數與一次函數的交點問題:求反比例函數與一次函數的交點坐標,把兩個函數關系式聯立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.24、(1)y=-x+40(10≤x≤16);(2)每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【解析】

根據題可設出一般式,再由圖中數據帶入可得答案,根據題目中的x的取值可得結果.②由總利潤=數量×單間商品的利潤可得函數式,可得解析式為一元二次式,配成頂點式可求出最大利潤時的銷售價,即可得出答案.【詳解】(1)y=-x+40(10≤x≤16).(2)根據題意,得:W=(x-10)y=(x-10)(-x+40)=-∵a=-1<0∴當x<25時,W隨x的增大而增大∵10≤x≤16∴當x=16時,W取得最大值,最大值是144答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】熟悉掌握圖中所給信息以及列方程組是解決本題的關鍵.25、(1)被隨機抽取的學生共有50人;(2)活動數為3項的學生所對應的扇形圓心角為72°,(3)參與了4項或5項活動的學生共有720人.【解析】分析:(1)利用活動數為2項的學生的數量以及百分比,即可得到被隨機抽取的學生數;(2)利用活動數為3項的學生數,即可得到對應的扇形圓心角的度數,利用活動數為5項的學生數,即可補全折線統計圖;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論