




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則元素個數為()A.1 B.2 C.3 D.42.我國宋代數學家秦九韶(1202-1261)在《數書九章》(1247)一書中提出“三斜求積術”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質是根據三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或3.設函數在上可導,其導函數為,若函數在處取得極大值,則函數的圖象可能是()A. B.C. D.4.設過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.5.已知函數,,若對任意的,存在實數滿足,使得,則的最大值是()A.3 B.2 C.4 D.56.若實數滿足不等式組,則的最大值為()A. B. C.3 D.27.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.8.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是()A. B. C. D.9.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.10.《周易》歷來被人們視作儒家群經之首,它表現了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數的思想方法.我們用近代術語解釋為:把陽爻“-”當作數字“1”,把陰爻“--”當作數字“0”,則八卦所代表的數表示如下:卦名符號表示的二進制數表示的十進制數坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數是()A.18 B.17 C.16 D.1511.已知數列滿足,且成等比數列.若的前n項和為,則的最小值為()A. B. C. D.12.函數在上的大致圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則實數______.14.已知函數,對于任意都有,則的值為______________.15.若函數的圖像與直線的三個相鄰交點的橫坐標分別是,,,則實數的值為________.16.已知定義在的函數滿足,且當時,,則的解集為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.18.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).19.(12分)定義:若數列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數列”.(1)為“﹣數列”中的任意三項,則使得的取法有多少種?(2)為“﹣數列”中的任意三項,則存在多少正整數對使得且的概率為.20.(12分)已知.(1)若是上的增函數,求的取值范圍;(2)若函數有兩個極值點,判斷函數零點的個數.21.(12分)已知函數.(1)若恒成立,求的取值范圍;(2)設函數的極值點為,當變化時,點構成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.22.(10分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系.(1)設直線l的極坐標方程為,若直線l與曲線C交于兩點A.B,求AB的長;(2)設M、N是曲線C上的兩點,若,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數為2,故選:B.【點睛】本題考查集合的交集運算,關鍵在于作出集合所表示的點的圖象,再運用數形結合的思想,屬于基礎題.2、C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關系求解.【詳解】已知,,,代入,得,即,解得,當時,由余弦弦定理得:,.當時,由余弦弦定理得:,.故選:C【點睛】本題主要考查余弦定理和平方關系,還考查了對數學史的理解能力,屬于基礎題.3、B【解析】
由題意首先確定導函數的符號,然后結合題意確定函數在區間和處函數的特征即可確定函數圖像.【詳解】函數在上可導,其導函數為,且函數在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據函數取得極大值,判斷導函數在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.4、A【解析】
設坐標,根據向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設,,其中,,即關于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數量積運算;關鍵是利用動點坐標表示出變量,根據平面向量數量積的坐標運算可整理得軌跡方程.5、A【解析】
根據條件將問題轉化為,對于恒成立,然后構造函數,然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數研究函數的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.6、C【解析】
作出可行域,直線目標函數對應的直線,平移該直線可得最優解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當過點時,取得最大值1.故選:C.【點睛】本題考查簡單的線性規劃問題,解題關鍵是作出可行域,本題要注意可行域不是一個封閉圖形.7、D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.8、D【解析】
如圖,設雙曲線的右焦點為,連接并延長交右支于,連接,設,利用雙曲線的幾何性質可以得到,,結合、可求離心率.【詳解】如圖,設雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設,則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構造關于的方程,本題屬于難題.9、D【解析】
根據題意,求得的坐標,根據點在橢圓上,點的坐標滿足橢圓方程,即可求得結果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據題意求得點的坐標,屬中檔題.10、B【解析】
由題意可知“屯”卦符號“”表示二進制數字010001,將其轉化為十進制數即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數字010001,轉化為十進制數的計算為1×20+1×24=1.故選:B.【點睛】本題主要考查數制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.11、D【解析】
利用等比中項性質可得等差數列的首項,進而求得,再利用二次函數的性質,可得當或時,取到最小值.【詳解】根據題意,可知為等差數列,公差,由成等比數列,可得,∴,解得.∴.根據單調性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數列通項公式、等比中項性質、等差數列前項和的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.12、D【解析】
討論的取值范圍,然后對函數進行求導,利用導數的幾何意義即可判斷.【詳解】當時,,則,所以函數在上單調遞增,令,則,根據三角函數的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數的圖像,考查了導數與函數單調性的關系以及導數的幾何意義,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、-2【解析】
根據向量坐標運算可求得,根據平行關系可構造方程求得結果.【詳解】由題意得:,解得:本題正確結果:【點睛】本題考查向量的坐標運算,關鍵是能夠利用平行關系構造出方程.14、【解析】
由條件得到函數的對稱性,從而得到結果【詳解】∵f=f,∴x=是函數f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【點睛】本題考查了正弦型三角函數的對稱性,注意對稱軸必過最高點或最低點,屬于基礎題.15、4【解析】
由題可分析函數與的三個相鄰交點中不相鄰的兩個交點距離為,即,進而求解即可【詳解】由題意得函數的最小正周期,解得故答案為:4【點睛】本題考查正弦型函數周期的應用,考查求正弦型函數中的16、【解析】
由已知得出函數是偶函數,再得出函數的單調性,得出所解不等式的等價的不等式,可得解集.【詳解】因為定義在的函數滿足,所以函數是偶函數,又當時,,得時,,所以函數在上單調遞減,所以函數在上單調遞減,函數在上單調遞增,所以不等式等價于,即或,解得或,所以不等式的解集為:.故答案為:.【點睛】本題考查抽象函數的不等式的求解,關鍵得出函數的奇偶性,單調性,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)通過討論的范圍,得到關于的不等式組,解出取并集即可.(2)去絕對值將函數寫成分段函數形式討論分段函數的單調性由恒成立求得結果.【詳解】解:(1)當時,,即或或解之得或,即不等式的解集為.(2)由題意得:當時為減函數,顯然恒成立.當時,為增函數,,當時,為減函數,綜上所述:使恒成立的的取值范圍為.【點睛】本題考查了解絕對值不等式問題,考查不等式恒成立問題中求解參數問題,考查分類討論思想,轉化思想,屬于中檔題.18、(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設三棱臺和三棱柱的高都為上、下底面之間的距離為,根據棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由,,平面,所以平面,因為平面,所以.(2)因為,可得,令,,設三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點睛】本題主要考查了直線與平面垂直的判定與應用,以及幾何體的體積公式的應用,其中解答中熟記線面位置關系的判定定理與性質定理,以及熟練應用幾何體的體積公式進行求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.19、(1)16;(2)115.【解析】
(1)易得使得的情況只有“”,“”兩種,再根據組合的方法求解兩種情況分別的情況數再求和即可.(2)易得“”共有種,“”共有種.再根據古典概型的方法可知,利用組合數的計算公式可得,當時根據題意有,共個;當時求得,再根據換元根據整除的方法求解滿足的正整數對即可.【詳解】解:(1)三個數乘積為有兩種情況:“”,“”,其中“”共有:種,“”共有:種,利用分類計數原理得:為“﹣數列”中的任意三項,則使得的取法有:種.(2)與(1)同理,“”共有種,“”共有種,而在“﹣數列”中任取三項共有種,根據古典概型有:,再根據組合數的計算公式能得到:,時,應滿足,,共個,時,應滿足,視為常數,可解得,,根據可知,,,,根據可知,,(否則),下設,則由于為正整數知必為正整數,,,化簡上式關系式可以知道:,均為偶數,設,則,由于中必存在偶數,只需中存在數為的倍數即可,,.檢驗:符合題意,共有個,綜上所述:共有個數對符合題意.【點睛】本題主要考查了排列組合的基本方法,同時也考查了組合數的運算以及整數的分析方法等,需要根據題意20、(1)(2)三個零點【解析】
(1)由題意知恒成立,構造函數,對函數求導,求得函數最值,進而得到結果;(2)當時先對函數求導研究函數的單調性可得到函數有兩個極值點,再證,.【詳解】(1)由得,由題意知恒成立,即,設,,時,遞減,時,,遞增;故,即,故的取值范圍是.(2)當時,單調,無極值;當時,,一方面,,且在遞減,所以在區間有一個零點.另一方面,,設,則,從而在遞增,則,即,又在遞增,所以在區間有一個零點.因此,當時在和各有一個零點,將這兩個零點記為,,當時,即;當時,即;當時,即:從而在遞增,在遞減,在遞增;于是是函數的極大值點,是函數的極小值點.下面證明:,由得,即,由得,令,則,①當時,遞減,則,而,故;②當時,遞減,則,而,故;一方面,因為,又,且在遞增,所以在上有一個零點,即在上有一個零點.另一方面,根據得,則有:,又,且在遞增,故在上有一個零點,故在上有一個零點.又,故有三個零點.【點睛】本題考查函數的零點,導數的綜合應用.在研究函數零點時,有一種方法是把函數的零點轉化為方程的解,再把方程的解轉化為函數圖象的交點,特別是利用分離參數法轉化為動直線與函數圖象交點問題,這樣就可利用導數研究新函數的單調性與極值,從而得出函數的變化趨勢,得出結論.21、(1);(2)證明見解析【解析】
(1)由恒成立,可得恒成立,進而構造函數,求導可判斷出的單調性,進而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進而可得,即曲線的方程為,進而只需證明對任意,方程有唯一解,然后構造函數,分、和三種情況,分別證明函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025班組安全培訓考試試題附完整答案(奪冠系列)
- 2025年企業負責人安全培訓考試試題含答案【培優】
- 2025年企業級安全培訓考試試題附答案(突破訓練)
- 2025民間房產抵押借款合同范本下載
- 2025授權采購石油居間合同
- 2025《酒店業勞動合同》
- 2025年新型靜電消除器項目合作計劃書
- 2025年建筑防水卷材及制品項目合作計劃書
- 2025裝飾設計工程承包合同范本模板
- 2025因合同期滿離職信
- 超導材料介紹課件
- 2023年版勞動實踐河北科學技術出版社一年級下冊全冊教案
- 民法典合同編全面解讀課件
- 一年級下學期家長會ppt
- 空調維修保養安全文明保障方案
- 實驗室操作的生物因子及其危害程度分級一覽表
- 5000t新型干法水泥生產線回轉窯工藝設計及及說明書
- 數控銑床進給系統結構設計說明書
- 智慧農業平臺解決方案
- 《騎鵝旅行記》閱讀題(有答案,內容全)
- ●粘度對離心泵性能影響最新標準初析及粘液泵選型經驗
評論
0/150
提交評論