




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省滁州市明光中學新高考壓軸卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是等差數列,且公差不為零,其前項和為.則“,”是“為遞增數列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知函數的圖象與直線的相鄰交點間的距離為,若定義,則函數,在區間內的圖象是()A. B.C. D.3.設集合,集合,則=()A. B. C. D.R4.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.5.已知函數,則下列結論中正確的是①函數的最小正周期為;②函數的圖象是軸對稱圖形;③函數的極大值為;④函數的最小值為.A.①③ B.②④C.②③ D.②③④6.已知雙曲線的一條漸近線方程為,,分別是雙曲線C的左、右焦點,點P在雙曲線C上,且,則()A.9 B.5 C.2或9 D.1或57.如圖所示的“數字塔”有以下規律:每一層最左與最右的數字均為2,除此之外每個數字均為其兩肩的數字之積,則該“數字塔”前10層的所有數字之積最接近()A. B. C. D.8.將函數的圖象向左平移個單位長度,得到的函數為偶函數,則的值為()A. B. C. D.9.已知定義在上的奇函數,其導函數為,當時,恒有.則不等式的解集為().A. B.C.或 D.或10.已知數列是公比為的等比數列,且,,成等差數列,則公比的值為(
)A. B. C.或 D.或11.已知函數在上單調遞增,則的取值范圍()A. B. C. D.12.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若關于的方程恰有四個不同的解,則實數的取值范圍是______.14.已知集合,,則________.15.已知函數,則關于的不等式的解集為_______.16.若、滿足約束條件,則的最小值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)討論的單調性并指出相應單調區間;(2)若,設是函數的兩個極值點,若,且恒成立,求實數k的取值范圍.18.(12分)在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出的普通方程和的直角坐標方程;(2)設點在上,點在上,求的最小值以及此時的直角坐標.19.(12分)在中,角A,B,C的對邊分別為a,b,c,且.(1)求B;(2)若的面積為,周長為8,求b.20.(12分)如圖1,在等腰中,,,分別為,的中點,為的中點,在線段上,且。將沿折起,使點到的位置(如圖2所示),且。(1)證明:平面;(2)求平面與平面所成銳二面角的余弦值21.(12分)一個工廠在某年里連續10個月每月產品的總成本(萬元)與該月產量(萬件)之間有如下一組數據:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發現可用線性回歸模型擬合與的關系,請用相關系數加以說明;(2)①建立月總成本與月產量之間的回歸方程;②通過建立的關于的回歸方程,估計某月產量為1.98萬件時,產品的總成本為多少萬元?(均精確到0.001)附注:①參考數據:,,,,.②參考公式:相關系數,,.22.(10分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據等差數列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數列為單調遞減數列,則必存在,使得當時,,則,不合乎題意;若,由且數列為單調遞增數列,則對任意的,,合乎題意.所以,“,”“為遞增數列”;必要性:設,當時,,此時,,但數列是遞增數列.所以,“,”“為遞增數列”.因此,“,”是“為遞增數列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合等差數列的前項和公式是解決本題的關鍵,屬于中等題.2、A【解析】
由題知,利用求出,再根據題給定義,化簡求出的解析式,結合正弦函數和正切函數圖象判斷,即可得出答案.【詳解】根據題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數和正切函數圖象可知正確.故選:A.【點睛】本題考查三角函數中正切函數的周期和圖象,以及正弦函數的圖象,解題關鍵是對新定義的理解.3、D【解析】試題分析:由題,,,選D考點:集合的運算4、C【解析】
設射線OA與x軸正向所成的角為,由三角函數的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數的最值問題,涉及到三角函數的定義、輔助角公式等知識,是一道容易題.5、D【解析】
因為,所以①不正確;因為,所以,,所以,所以函數的圖象是軸對稱圖形,②正確;易知函數的最小正周期為,因為函數的圖象關于直線對稱,所以只需研究函數在上的極大值與最小值即可.當時,,且,令,得,可知函數在處取得極大值為,③正確;因為,所以,所以函數的最小值為,④正確.故選D.6、B【解析】
根據漸近線方程求得,再利用雙曲線定義即可求得.【詳解】由于,所以,又且,故選:B.【點睛】本題考查由漸近線方程求雙曲線方程,涉及雙曲線的定義,屬基礎題.7、A【解析】
結合所給數字特征,我們可將每層數字表示成2的指數的形式,觀察可知,每層指數的和成等比數列分布,結合等比數列前項和公式和對數恒等式即可求解【詳解】如圖,將數字塔中的數寫成指數形式,可發現其指數恰好構成“楊輝三角”,前10層的指數之和為,所以原數字塔中前10層所有數字之積為.故選:A【點睛】本題考查與“楊輝三角”有關的規律求解問題,邏輯推理,等比數列前項和公式應用,屬于中檔題8、D【解析】
利用三角函數的圖象變換求得函數的解析式,再根據三角函數的性質,即可求解,得到答案.【詳解】將將函數的圖象向左平移個單位長度,可得函數又由函數為偶函數,所以,解得,因為,當時,,故選D.【點睛】本題主要考查了三角函數的圖象變換,以及三角函數的性質的應用,其中解答中熟記三角函數的圖象變換,合理應用三角函數的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.9、D【解析】
先通過得到原函數為增函數且為偶函數,再利用到軸距離求解不等式即可.【詳解】構造函數,則由題可知,所以在時為增函數;由為奇函數,為奇函數,所以為偶函數;又,即即又為開口向上的偶函數所以,解得或故選:D【點睛】此題考查根據導函數構造原函數,偶函數解不等式等知識點,屬于較難題目.10、D【解析】
由成等差數列得,利用等比數列的通項公式展開即可得到公比q的方程.【詳解】由題意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=故選:D.【點睛】本題考查等差等比數列的綜合,利用等差數列的性質建立方程求q是解題的關鍵,對于等比數列的通項公式也要熟練.11、B【解析】
由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.12、C【解析】
畫出圖形,以為基底將向量進行分解后可得結果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質就是利用平行四邊形法則或三角形法則進行向量的加減運算或數乘運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,判斷為偶函數,考慮x>0時,的解析式和零點個數,利用導數分析函數的單調性,作函數大致圖象,即可得到的范圍.【詳解】設,則在是偶函數,當時,,由得,記,,,故函數在增,而,所以在減,在增,,當時,,當時,,因此的圖象為因此實數的取值范圍是.【點睛】本題主要考查了函數的零點的個數問題,涉及構造函數,函數的奇偶性,利用導數研究函數單調性,考查了數形結合思想方法,以及化簡運算能力和推理能力,屬于難題.14、【解析】
利用交集定義直接求解.【詳解】解:集合奇數,偶數,.故答案為:.【點睛】本題考查交集的求法,考查交集定義等基礎知識,考查運算求解能力,屬于基礎題.15、【解析】
判斷的奇偶性和單調性,原不等式轉化為,運用單調性,可得到所求解集.【詳解】令,易知函數為奇函數,在R上單調遞增,,即,∴∴,即x>故答案為:【點睛】本題考查函數的奇偶性和單調性的運用:解不等式,考查轉化思想和運算能力,屬于中檔題.16、【解析】
作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數取得最小時對應的最優解,代入目標函數計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯立,解得,即點,平移直線,當直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規劃問題,考查線性目標函數的最值問題,考查數形結合思想的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)【解析】
(1)先對函數進行求導得,對分成和兩種情況討論,從而得到相應的單調區間;(2)對函數求導得,從而有,,,三個方程中利用得到.將不等式的左邊轉化成關于的函數,再構造新函數利用導數研究函數的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當時,則,故在上單調遞減;當時,令,所以在上單調遞減,在上單調遞增.綜上所述:當時,在上單調遞減;當時,在上單調遞減,在上單調遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設,則,∴在上單調遞減;當時,.∴,即所求的取值范圍為.【點睛】本題考查利用導數研究函數的單調性、最值,考查分類討論思想和數形結合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉化為單元問題,然后利用導數研究單變量函數的性質.18、(1):,:;(2),此時.【解析】試題分析:(1)的普通方程為,的直角坐標方程為;(2)由題意,可設點的直角坐標為到的距離當且僅當時,取得最小值,最小值為,此時的直角坐標為.試題解析:(1)的普通方程為,的直角坐標方程為.(2)由題意,可設點的直角坐標為,因為是直線,所以的最小值即為到的距離的最小值,.當且僅當時,取得最小值,最小值為,此時的直角坐標為.考點:坐標系與參數方程.【方法點睛】參數方程與普通方程的互化:把參數方程化為普通方程,需要根據其結構特征,選取適當的消參方法,常見的消參方法有:代入消參法;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等.把曲線的普通方程化為參數方程的關鍵:一是適當選取參數;二是確保互化前后方程的等價性.注意方程中的參數的變化范圍.19、(1);(2)【解析】
(1)通過正弦定理和內角和定理化簡,再通過二倍角公式即可求出;(2)通過三角形面積公式和三角形的周長為8,求出b的表達式后即可求出b的值.【詳解】(1)由三角形內角和定理及誘導公式,得,結合正弦定理,得,由及二倍角公式,得,即,故;(2)由題設,得,從而,由余弦定理,得,即,又,所以,解得.【點睛】本題綜合考查了正余弦定理,倍角公式,三角形面積公式,屬于基礎題.20、(1)證明見解析(2)【解析】
(1)要證明線面平行,需證明線線平行,取的中點,連接,根據條件證明,即;(2)以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,求兩個平面的法向量,利用法向量求二面角的余弦值.【詳解】(1)證明:取的中點,連接.∵,∴為的中點.又為的中點,∴.依題意可知,則四邊形為平行四邊形,∴,從而.又平面,平面,∴平面.(2),且,平面,平面,,,且,平面,以為原點,所在直線為軸,過作平行于的直線為軸,所在直線為軸,建立空間直角坐標系,不妨設,則,,,,,,,,.設平面的法向量為,則,即,令,得.設平面的法向量為,則,即,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025人教版(PEP)三年級下冊期末模擬卷(含答案含聽力原文無音頻)
- 工業園區綠色低碳化改造方案
- 工業廢棄地生態修復實踐案例
- 工業旅游的發展現狀及前景分析
- 工業機器人技術培訓及故障排除
- 工業污染防治與生態保護
- 工業生產中熱風爐的節能技術應用案例
- 工業污染對森林環境的影響與修復策略
- 工業污染防治的技術與策略研究
- 工業自動化設備維護與管理系統
- 香水廣告案例分析
- 2024年北京中考記敘文閱讀專題02寫 人記事散文(含答案解析)
- 2024年西部機場集團青海機場有限公司招聘筆試參考題庫含答案解析
- 李辛演講-現代人的壓力與管理
- 自評報告中如何展示自己在疾病防控和公共衛生方面的能力
- 基于人工智能的CAD模型自動生成技術研究
- 無憂傳媒商業計劃書
- 【物流運輸合同】公司物流運輸合同
- 建設施工隱患判定和標準化檢查清單
- (完整)仰斜式擋土墻計算圖(斜基礎)
- 熱軋帶鋼板形控制
評論
0/150
提交評論