四川省瀘州市瀘縣第二中學新高考數學五模試卷及答案解析_第1頁
四川省瀘州市瀘縣第二中學新高考數學五模試卷及答案解析_第2頁
四川省瀘州市瀘縣第二中學新高考數學五模試卷及答案解析_第3頁
四川省瀘州市瀘縣第二中學新高考數學五模試卷及答案解析_第4頁
四川省瀘州市瀘縣第二中學新高考數學五模試卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省瀘州市瀘縣第二中學新高考數學五模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知偶函數在區間內單調遞減,,,,則,,滿足()A. B. C. D.2.已知函數,若對于任意的,函數在內都有兩個不同的零點,則實數的取值范圍為()A. B. C. D.3.設(是虛數單位),則()A. B.1 C.2 D.4.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發展風力發電,近10年來,全球風力發電累計裝機容量連年攀升,中國更是發展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發電技術也日臻成熟,在全球范圍的能源升級換代行動中體現出大國的擔當與決心.以下是近10年全球風力發電累計裝機容量與中國新增裝機容量圖.根據所給信息,正確的統計結論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過5.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=06.已知關于的方程在區間上有兩個根,,且,則實數的取值范圍是()A. B. C. D.7.若雙曲線的離心率為,則雙曲線的焦距為()A. B. C.6 D.88.將函數圖象上每一點的橫坐標變為原來的2倍,再將圖像向左平移個單位長度,得到函數的圖象,則函數圖象的一個對稱中心為()A. B. C. D.9.已知點(m,8)在冪函數的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b10.已知,,則()A. B. C.3 D.411.已知函數,若有2個零點,則實數的取值范圍為()A. B. C. D.12.若直線l不平行于平面α,且l?α,則()A.α內所有直線與l異面B.α內只存在有限條直線與l共面C.α內存在唯一的直線與l平行D.α內存在無數條直線與l相交二、填空題:本題共4小題,每小題5分,共20分。13.已知函數若關于的不等式的解集是,則的值為_____.14.過圓的圓心且與直線垂直的直線方程為__________.15.已知函數,若對于任意正實數,均存在以為三邊邊長的三角形,則實數k的取值范圍是_______.16.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為貫徹十九大報告中“要提供更多優質生態產品以滿足人民日益增長的優美生態環境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監測培育的某種植物的生長情況.現分別從、、三塊試驗田中各隨機抽取株植物測量高度,數據如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數據的平均數記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數據與表格中的所有數據構成的新樣本的平均數記為,試比較和的大?。ńY論不要求證明)18.(12分)已知函數,其中.(Ⅰ)若,求函數的單調區間;(Ⅱ)設.若在上恒成立,求實數的最大值.19.(12分)已知,函數.(Ⅰ)若在區間上單調遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數據:)20.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.21.(12分)已知函數.(1)求不等式的解集;(2)若關于的不等式在區間內無解,求實數的取值范圍.22.(10分)設數列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數列{an}(2)設cn=bnan,求數列

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

首先由函數為偶函數,可得函數在內單調遞增,再由,即可判定大小【詳解】因為偶函數在減,所以在上增,,,,∴.故選:D【點睛】本題考查函數的奇偶性和單調性,不同類型的數比較大小,應找一個中間數,通過它實現大小關系的傳遞,屬于中檔題.2、D【解析】

將原題等價轉化為方程在內都有兩個不同的根,先求導,可判斷時,,是增函數;當時,,是減函數.因此,再令,求導得,結合韋達定理可知,要滿足題意,只能是存在零點,使得在有解,通過導數可判斷當時,在上是增函數;當時,在上是減函數;則應滿足,再結合,構造函數,求導即可求解;【詳解】函數在內都有兩個不同的零點,等價于方程在內都有兩個不同的根.,所以當時,,是增函數;當時,,是減函數.因此.設,,若在無解,則在上是單調函數,不合題意;所以在有解,且易知只能有一個解.設其解為,當時,在上是增函數;當時,在上是減函數.因為,方程在內有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所以,代入,得.設,,所以在上是增函數,而,由可得,得.由在上是增函數,得.綜上所述,故選:D.【點睛】本題考查由函數零點個數求解參數取值范圍問題,構造函數法,導數法研究函數增減性與最值關系,轉化與化歸能力,屬于難題3、A【解析】

先利用復數代數形式的四則運算法則求出,即可根據復數的模計算公式求出.【詳解】∵,∴.故選:A.【點睛】本題主要考查復數代數形式的四則運算法則的應用,以及復數的模計算公式的應用,屬于容易題.4、D【解析】

先列表分析近10年全球風力發電新增裝機容量,再結合數據研究單調性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現下降趨勢,B錯誤;經計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D【點睛】本題考查條形圖,考查基本分析求解能力,屬基礎題.5、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.6、C【解析】

先利用三角恒等變換將題中的方程化簡,構造新的函數,將方程的解的問題轉化為函數圖象的交點問題,畫出函數圖象,再結合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.【點睛】本題考查了三角恒等變換,方程的根的問題,利用數形結合法,求得范圍.屬于中檔題.7、A【解析】

依題意可得,再根據離心率求出,即可求出,從而得解;【詳解】解:∵雙曲線的離心率為,所以,∴,∴,雙曲線的焦距為.故選:A【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題.8、D【解析】

根據函數圖象的變換規律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變為原來的2倍,得到再將圖像向左平移個單位長度,得到函數的圖象,故選:D【點睛】考查三角函數圖象的變換規律以及其有關性質,基礎題.9、B【解析】

先利用冪函數的定義求出m的值,得到冪函數解析式為f(x)=x3,在R上單調遞增,再利用冪函數f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數f(x)=xn上,∴2n=8,∴n=3,∴冪函數解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數的性質,以及利用函數的單調性比較函數值大小,屬于中檔題.10、A【解析】

根據復數相等的特征,求出和,再利用復數的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數的特征和復數的模,屬于基礎題.11、C【解析】

令,可得,要使得有兩個實數解,即和有兩個交點,結合已知,即可求得答案.【詳解】令,可得,要使得有兩個實數解,即和有兩個交點,,令,可得,當時,,函數在上單調遞增;當時,,函數在上單調遞減.當時,,若直線和有兩個交點,則.實數的取值范圍是.故選:C.【點睛】本題主要考查了根據零點求參數范圍,解題關鍵是掌握根據零點個數求參數的解法和根據導數求單調性的步驟,考查了分析能力和計算能力,屬于中檔題.12、D【解析】

通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯誤,故選D.【點睛】本題主要考查直線與平面的位置關系,直線與直線的位置關系,難度不大.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據題意可知的兩根為,再根據解集的區間端點得出參數的關系,再求解即可.【詳解】解:因為函數,關于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【點睛】本題主要考查了不等式的解集與參數之間的關系,屬于基礎題.14、【解析】

根據與已知直線垂直關系,設出所求直線方程,將已知圓圓心坐標代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點睛】本題考查圓的方程、直線方程求法,注意直線垂直關系的靈活應用,屬于基礎題.15、【解析】

根據三角形三邊關系可知對任意的恒成立,將的解析式用分離常數法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據函數的單調性求出函數值域,再討論,轉化為的最小值與的最大值的不等式,進而求出的取值范圍.【詳解】因為對任意正實數,都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當,即時,該函數在上單調遞減,則;當,即時,,當,即時,該函數在上單調遞增,則,所以,當時,因為,,所以,解得;當時,,滿足條件;當時,,且,所以,解得,綜上,,故答案為:【點睛】本題考查參數范圍,考查三角形的構成條件,考查利用函數單調性求函數值域,考查分類討論思想與轉化思想.16、【解析】

求解占圓柱形容器的的總容積的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】

設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結果;(2)設事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據題意直接判斷和的大小即可.【詳解】設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點睛】本題考查概率的求法,考查互斥事件加法公式、相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,是中等題.18、(Ⅰ)單調遞減區間為,單調遞增區間為;(Ⅱ).【解析】

(Ⅰ)求出函數的定義域以及導數,利用導數可求出該函數的單調遞增區間和單調遞減區間;(Ⅱ)由題意可知在上恒成立,分和兩種情況討論,在時,構造函數,利用導數證明出在上恒成立;在時,經過分析得出,然后構造函數,利用導數證明出在上恒成立,由此得出,進而可得出實數的最大值.【詳解】(Ⅰ)函數的定義域為.當時,.令,解得(舍去),.當時,,所以,函數在上單調遞減;當時,,所以,函數在上單調遞增.因此,函數的單調遞減區間為,單調遞增區間為;(Ⅱ)由題意,可知在上恒成立.(i)若,,,,構造函數,,則,,,.又,在上恒成立.所以,函數在上單調遞增,當時,在上恒成立.(ii)若,構造函數,.,所以,函數在上單調遞增.恒成立,即,,即.由題意,知在上恒成立.在上恒成立.由(Ⅰ)可知,又,當,即時,函數在上單調遞減,,不合題意,,即.此時構造函數,.,,,,恒成立,所以,函數在上單調遞增,恒成立.綜上,實數的最大值為【點睛】本題考查利用導數求解函數的單調區間,同時也考查了利用導數研究函數不等式恒成立問題,本題的難點在于不斷構造新函數來求解,考查推理能力與運算求解能力,屬于難題.19、(Ⅰ);(Ⅱ)3.【解析】

(Ⅰ)先求導,得,已知導函數單調遞增,又在區間上單調遞增,故,令,求得,討論得,而,故,進而得解;(Ⅱ)可通過必要性探路,當時,由知,又由于,則,當,,結合零點存在定理可判斷必存在使得,得,,化簡得,再由二次函數性質即可求證;【詳解】(Ⅰ)的定義域為.易知單調遞增,由題意有.令,則.令得.所以當時,單調遞增;當時,單調遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調遞增,而,,因此必存在使得,即.且當時,單調遞減;當時,,單調遞增;則.綜上,的最大值為3.【點睛】本題考查導數的計算,利用導數研究函數的增減性和最值,屬于中檔題20、(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論