四川省德陽中學新高考數學考前最后一卷預測卷及答案解析_第1頁
四川省德陽中學新高考數學考前最后一卷預測卷及答案解析_第2頁
四川省德陽中學新高考數學考前最后一卷預測卷及答案解析_第3頁
四川省德陽中學新高考數學考前最后一卷預測卷及答案解析_第4頁
四川省德陽中學新高考數學考前最后一卷預測卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省德陽中學新高考數學考前最后一卷預測卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則()A.2 B. C. D.32.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-13.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.4.如圖是二次函數的部分圖象,則函數的零點所在的區間是()A. B. C. D.5.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.6.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個數為()A.1 B.2C.3 D.47.數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數λ的最大值為()A. B. C. D.8.已知為虛數單位,實數滿足,則()A.1 B. C. D.9.已知函數()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.10.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.211.設函數若關于的方程有四個實數解,其中,則的取值范圍是()A. B. C. D.12.已知復數z滿足(其中i為虛數單位),則復數z的虛部是()A. B.1 C. D.i二、填空題:本題共4小題,每小題5分,共20分。13.已知角的終邊過點,則______.14.的三個內角A,B,C所對應的邊分別為a,b,c,已知,則________.15.已知F為雙曲線的右焦點,過F作C的漸近線的垂線FD,D為垂足,且(O為坐標原點),則C的離心率為________.16.已知雙曲線的左、右焦點分別為為雙曲線上任一點,且的最小值為,則該雙曲線的離心率是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,過點且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點的連線相互垂直.(1)求橢圓的方程;(2)若圓上存在兩點,,橢圓上存在兩個點滿足:三點共線,三點共線,且,求四邊形面積的取值范圍.18.(12分)已知函數.(1)解不等式;(2)若函數最小值為,且,求的最小值.19.(12分)已知是拋物線:的焦點,點在上,到軸的距離比小1.(1)求的方程;(2)設直線與交于另一點,為的中點,點在軸上,.若,求直線的斜率.20.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.21.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.22.(10分)已知為坐標原點,點,,,動點滿足,點為線段的中點,拋物線:上點的縱坐標為,.(1)求動點的軌跡曲線的標準方程及拋物線的標準方程;(2)若拋物線的準線上一點滿足,試判斷是否為定值,若是,求這個定值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

利用分段函數的性質逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數值的求法,考查對數的運算和對數函數的性質,是基礎題,解題時注意函數性質的合理應用.2、D【解析】

利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.3、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質的應用,其中解答中熟記雙曲線的幾何性質,準確運算是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.4、B【解析】

根據二次函數圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區間端點函數值正負,即可求出結論.【詳解】∵,結合函數的圖象可知,二次函數的對稱軸為,,,∵,所以在上單調遞增.又因為,所以函數的零點所在的區間是.故選:B.【點睛】本題考查二次函數的圖象及函數的零點,屬于基礎題.5、A【解析】

畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據,即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關鍵點是通過幾何關系求得球心位置和球半徑,方法較多,屬于較易題目.6、D【解析】可以是共4個,選D.7、D【解析】

利用等差數列通項公式推導出λ,由d∈[1,2],能求出實數λ取最大值.【詳解】∵數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數,∴d=1時,實數λ取最大值為λ.故選D.【點睛】本題考查實數值的最大值的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.8、D【解析】,則故選D.9、A【解析】

是函數的零點,根據五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數的周期性,考查函數的對稱性.函數的零點就是其圖象對稱中心的橫坐標.10、A【解析】

求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.11、B【解析】

畫出函數圖像,根據圖像知:,,,計算得到答案.【詳解】,畫出函數圖像,如圖所示:根據圖像知:,,故,且.故.故選:.【點睛】本題考查了函數零點問題,意在考查學生的計算能力和應用能力,畫出圖像是解題的關鍵.12、A【解析】

由虛數單位i的運算性質可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數單位i的運算性質、復數的概念,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意利用任意角的三角函數的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數的定義,兩角和差正弦公式,屬于基礎題.14、【解析】

利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:【點睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎題.15、2【解析】

求出焦點到漸近線的距離就可得到的等式,從而可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,由得,∴,,∴.故答案為:2.【點睛】本題考查求雙曲線的離心率,解題關鍵是求出焦點到漸近線的距離,從而得出一個關于的等式.16、【解析】

根據雙曲線方程,設及,將代入雙曲線方程并化簡可得,由題意的最小值為,結合平面向量數量積的坐標運算化簡,即可求得的值,進而求得離心率即可.【詳解】設點,,則,即,∵,,,當時,等號成立,∴,∴,∴.故答案為:.【點睛】本題考查了雙曲線與向量的綜合應用,由平面向量數量積的最值求離心率,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)又題意知,,及即可求得,從而得橢圓方程.(2)分三種情況:直線斜率不存在時,的斜率為0時,的斜率存在且不為0時,設出直線方程,聯立方程組,用韋達定理和弦長公式以及四邊形的面積公式計算即可.【詳解】(1)由焦點與短軸兩端點的連線相互垂直及橢圓的對稱性可知,,∵過點且與軸垂直的直線被橢圓截得的線段長為.又,解得.∴橢圓的方程為(2)由(1)可知圓的方程為,(i)當直線的斜率不存在時,直線的斜率為0,此時(ii)當直線的斜率為零時,.(iii)當直線的斜率存在且不等于零時,設直線的方程為,聯立,得,設的橫坐標分別為,則.所以,(注:的長度也可以用點到直線的距離和勾股定理計算.)由可得直線的方程為,聯立橢圓的方程消去,得設的橫坐標為,則..綜上,由(i)(ii)(ⅲ)得的取值范圍是.【點睛】本題考查橢圓的標準方程與幾何性質、直線與圓錐曲線的位置關系的應用問題,解答此類題目,通常利用的關系,確定橢圓方程是基礎;通過聯立直線方程與橢圓方程建立方程組,應用一元二次方程根與系數,得到目標函數解析式,運用函數知識求解;本題是難題.18、(1)(2)【解析】

(1)利用零點分段法,求得不等式的解集.(2)先求得,即,再根據“的代換”的方法,結合基本不等式,求得的最小值.【詳解】(1)當時,,即,無解;當時,,即,得;當時,,即,得.故所求不等式的解集為.(2)因為,所以,則,.當且僅當即時取等號.故的最小值為.【點睛】本小題主要考查零點分段法解絕對值不等式,考查利用基本不等式求最值,考查化歸與轉化的數學思想方法,屬于中檔題.19、(1)(2)【解析】

(1)由拋物線定義可知,解得,故拋物線的方程為;(2)設直線:,聯立,利用韋達定理算出的中點,又,所以直線的方程為,求出,利用求解即可.【詳解】(1)設的準線為,過作于,則由拋物線定義,得,因為到的距離比到軸的距離大1,所以,解得,所以的方程為(2)由題意,設直線方程為,由消去,得,設,,則,所以,又因為為的中點,點的坐標為,直線的方程為,令,得,點的坐標為,所以,解得,所以直線的斜率為.【點睛】本題主要考查拋物線的定義,直線與拋物線的位置關系等基礎知識,考查學生的運算求解能力.涉及拋物線的弦的中點,斜率問題時,可采用韋達定理或“點差法”求解.20、(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設,則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點到平面的距離,由是中點,得到到平面的距離,然后根據與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點,連接,由,,得三點共線,且,又,,所以平面,所以.(Ⅱ)設,,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點到平面的距離,因為是中點,所以為到平面的距離,因為與平面所成的角的正弦值為,即,解得.【點睛】本題主要考查線面垂直的判定定理,線面角的應用,還考查了轉化化歸的思想和空間想象運算求解的能力,屬于中檔題.21、(1)證明見解析(2)【解析】

(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點,所以.因為,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設點到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因為,平面,平面,所以平面.所以點到平面的距離等于點到平面的距離.過點作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點到平面的距離.由(1)知,,在中,,,得.又,所以.所以點到平面的距離為.【點睛】本題主要考查空間面面垂直的的判定及點到面的距離,考查學生的空間想象能力、推理論證能力、運算求解能力.求點到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點到平面的垂線段,進行計算即可.22、(1)曲線的標準方程為.拋物線的標準方程為.(2)見解析【解析】

(1)由題知|PF1|+|PF2|2|F1F2|,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論