華東師大版高三第二次調研新高考數學試卷及答案解析_第1頁
華東師大版高三第二次調研新高考數學試卷及答案解析_第2頁
華東師大版高三第二次調研新高考數學試卷及答案解析_第3頁
華東師大版高三第二次調研新高考數學試卷及答案解析_第4頁
華東師大版高三第二次調研新高考數學試卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

VIP免費下載

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

華東師大版高三第二次調研新高考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,關于x的方程f(x)=a存在四個不同實數根,則實數a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)2.自2019年12月以來,在湖北省武漢市發現多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強的傳染性各級政府反應迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內.某社區按上級要求做好在鄂返鄉人員體格檢查登記,有3個不同的住戶屬在鄂返鄉住戶,負責該小區體格檢查的社區診所共有4名醫生,現要求這4名醫生都要分配出去,且每個住戶家里都要有醫生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種3.若復數()在復平面內的對應點在直線上,則等于()A. B. C. D.4.已知集合,集合,則()A. B. C. D.5.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.6.已知函數,若關于的方程恰好有3個不相等的實數根,則實數的取值范圍為()A. B. C. D.7.如圖,雙曲線的左,右焦點分別是直線與雙曲線的兩條漸近線分別相交于兩點.若則雙曲線的離心率為()A. B.C. D.8.命題:的否定為A. B.C. D.9.展開式中x2的系數為()A.-1280 B.4864 C.-4864 D.128010.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數,則()A., B.,C., D.,11.據國家統計局發布的數據,2019年11月全國CPI(居民消費價格指數),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%12.下圖是民航部門統計的某年春運期間,六個城市售出的往返機票的平均價格(單位元),以及相比于上一年同期價格變化幅度的數據統計圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價格最高B.天津的往返機票平均價格變化最大C.上海和廣州的往返機票平均價格基本相當D.相比于上一年同期,其中四個城市的往返機票平均價格在增加二、填空題:本題共4小題,每小題5分,共20分。13.數列滿足,則,_____.若存在n∈N*使得成立,則實數λ的最小值為______14.在平面直角坐標系中,若函數在處的切線與圓存在公共點,則實數的取值范圍為_____.15.如果拋物線上一點到準線的距離是6,那么______.16.函數在內有兩個零點,則實數的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為;直線l的參數方程為(t為參數).直線l與曲線C分別交于M,N兩點.(1)寫出曲線C的直角坐標方程和直線l的普通方程;(2)若點P的極坐標為,,求的值.18.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現統計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數表:亮燈時長/頻數1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設表示這10000盞燈在某一時刻亮燈的數目.①求的數學期望和方差;②若隨機變量滿足,則認為.假設當時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結果保留為整數).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.19.(12分)如圖,三棱柱ABC-A1B1C1中,側面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.20.(12分)已知a,b∈R,設函數f(x)=(I)若b=0,求f(x)的單調區間:(II)當x∈[0,+∞)時,f(x)的最小值為0,求a+5b的最大值.注:21.(12分)已知數列是各項均為正數的等比數列,,且,,成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,為數列的前項和,記,證明:.22.(10分)已知函數.(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數零點問題,關鍵在于等價轉化,將問題轉化為通過導函數討論函數單調性解決問題.2、C【解析】

先將4名醫生分成3組,其中1組有2人,共有種選法,然后將這3組醫生分配到3個不同的住戶中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數為種.故選:C【點睛】此題考查的是排列組合知識,解此類題時一般先組合再排列,屬于基礎題.3、C【解析】

由題意得,可求得,再根據共軛復數的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.【點睛】本題考查復數的幾何表示和共軛復數的定義,屬于基礎題.4、C【解析】

求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數的定義域與指數不等式的求解以及集合的基本運算,屬于基礎題.5、C【解析】

求得點坐標,由此求得直線的方程,聯立直線的方程和拋物線的方程,求得點坐標,進而求得【詳解】拋物線焦點為,令,,解得,不妨設,則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎題.6、D【解析】

討論,,三種情況,求導得到單調區間,畫出函數圖像,根據圖像得到答案.【詳解】當時,,故,函數在上單調遞增,在上單調遞減,且;當時,;當時,,,函數單調遞減;如圖所示畫出函數圖像,則,故.故選:.【點睛】本題考查了利用導數求函數的零點問題,意在考查學生的計算能力和應用能力.7、A【解析】

易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時,最關鍵的是找到的方程或不等式,本題屬于容易題.8、C【解析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結論否定,可知命題的否定為,故選C.9、A【解析】

根據二項式展開式的公式得到具體為:化簡求值即可.【詳解】根據二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【點睛】求二項展開式有關問題的常見類型及解題策略:(1)求展開式中的特定項.可依據條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第項,由特定項得出值,最后求出其參數.10、C【解析】

根據古典概型概率計算公式,計算出概率并求得數學期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數學期望的計算,屬于中檔題.11、D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.12、D【解析】

根據條形圖可折線圖所包含的數據對選項逐一分析,由此得出敘述不正確的選項.【詳解】對于A選項,根據折線圖可知深圳的變化幅度最小,根據條形圖可知北京的平均價格最高,所以A選項敘述正確.對于B選項,根據折線圖可知天津的往返機票平均價格變化最大,所以B選項敘述正確.對于C選項,根據條形圖可知上海和廣州的往返機票平均價格基本相當,所以C選項敘述正確.對于D選項,根據折線圖可知相比于上一年同期,除了深圳外,另外五個城市的往返機票平均價格在增加,故D選項敘述錯誤.故選:D【點睛】本小題主要考查根據條形圖和折線圖進行數據分析,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用“退一作差法”求得數列的通項公式,將不等式分離常數,利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當時兩式相減得所以當時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設,所以,即,所以單調遞增,的最小項,即有的最小值為.故答案為:(1).(2).【點睛】本小題主要考查根據遞推關系式求數列的通項公式,考查數列單調性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.14、【解析】

利用導數的幾何意義可求得函數在處的切線,再根據切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點睛】本題主要考查了導數的幾何意義求解切線方程的問題,同時也考查了根據直線與圓的位置關系求解參數范圍的問題,屬于基礎題.15、【解析】

先求出拋物線的準線方程,然后根據點到準線的距離為6,列出,直接求出結果.【詳解】拋物線的準線方程為,由題意得,解得.∵點在拋物線上,∴,∴,故答案為:.【點睛】本小題主要考查拋物線的定義,屬于基礎題.16、【解析】

設,,設,函數為奇函數,,函數單調遞增,,畫出簡圖,如圖所示,根據,解得答案.【詳解】,設,,則.原函數等價于函數,即有兩個解.設,則,函數為奇函數.,函數單調遞增,,,.當時,易知不成立;當時,根據對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據圖像知:故,即,根據對稱性知:.故答案為:.【點睛】本題考查了函數零點問題,意在考查學生的轉化能力和計算能力,畫出圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)2.【解析】

(1)由得,求出曲線的直角坐標方程.由直線的參數方程消去參數,即求直線的普通方程;(2)將直線的參數方程化為標準式(為參數),代入曲線的直角坐標方程,韋達定理得,點在直線上,則,即可求出的值.【詳解】(1)由可得,即,即,曲線的直角坐標方程為,由直線的參數方程(t為參數),消去得,即直線的普通方程為.(Ⅱ)點的直角坐標為,則點在直線上.將直線的參數方程化為標準式(為參數),代入曲線的直角坐標方程,整理得,直線與曲線交于兩點,,即.設點所對應的參數分別為,由韋達定理可得,.點在直線上,,.【點睛】本題考查參數方程、極坐標方程和普通方程的互化及應用,屬于中檔題.18、(1)(2)①,,②72【解析】

(1)將每組數據的組中值乘以對應的頻率,然后再將結果相加即可得到亮燈時長的平均數,將此平均數除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進行求解;②先根據條件計算出的取值范圍,然后根據并結合正態分布概率的對稱性,求解出在滿足取值范圍下對應的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據頻數分布表求解平均數、幾何概型(長度模型)、二項分布的均值與方差、正態分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態分布中的概率,一定要活用正態分布圖象的對稱性對應概率的對稱性.19、(1)見解析(2)【解析】

(1)通過勾股定理得出,又,進而可得平面,則可得到,問題得證;(2)如圖,以為原點,,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因為平面,所以,又因為,,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點,,,所在直線分別為軸,軸,軸,所以,平面的法向量,設平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.【點睛】本題考查空間垂直關系的證明,考查向量法求二面角的大小,考查學生計算能力,是中檔題.20、(I)詳見解析;(II)2【解析】

(I)求導得到f'(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論