2025屆湖北省武漢市黃陂區漢口北高中高一下數學期末統考試題含解析_第1頁
2025屆湖北省武漢市黃陂區漢口北高中高一下數學期末統考試題含解析_第2頁
2025屆湖北省武漢市黃陂區漢口北高中高一下數學期末統考試題含解析_第3頁
2025屆湖北省武漢市黃陂區漢口北高中高一下數學期末統考試題含解析_第4頁
2025屆湖北省武漢市黃陂區漢口北高中高一下數學期末統考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖北省武漢市黃陂區漢口北高中高一下數學期末統考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.《孫子算經》是中國古代重要的數學著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作多少個?”現有這樣的一個正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為()A. B. C. D.2.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.3.一個三棱錐內接于球,且,,則球心到平面的距離是()A. B. C. D.4.在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積大于的概率是()A. B. C. D.5.在中,,,,點P是內(包括邊界)的一動點,且(),則的最大值為()A.6 B. C. D.66.漢朝時,張衡得出圓周率的平方除以16等于,如圖,網格紙上的小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,俯視圖中的曲線為圓,利用張衡的結論可得該幾何體的體積為()A.32 B.40 C. D.7.我國古代數學名著《九章算術》中記載的“芻甍”(chumeng)是底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍.四邊形為矩形,與都是等邊三角形,,,則此“芻甍”的表面積為()A. B. C. D.8.已知向量與的夾角為,,,當時,實數為()A. B. C. D.9.某部門為了了解用電量y(單位:度)與氣溫x(單位:°C)之間的關系,隨機統計了某3天的用電量與當天氣溫如表所示.由表中數據得回歸直線方程y=-0.8x+a,則攝氏溫度(°C)4611用電量度數1074A.12.6 B.13.2 C.11.8 D.12.810.若函數只有一個零點,則實數的取值范圍是A.或 B.C.或 D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,四棱錐中,所有棱長均為2,是底面正方形中心,為中點,則直線與直線所成角的余弦值為____________.12.已知過兩點,的直線的傾斜角是,則______.13.一個封閉的正三棱柱容器,該容器內裝水恰好為其容積的一半(如圖1,底面處于水平狀態),將容器放倒(如圖2,一個側面處于水平狀態),這時水面與各棱交點分別為E,F、,,則的值是__________.14.已知等邊三角形的邊長為2,點P在邊上,點Q在邊的延長線上,若,則的最小值為______.15.某扇形的面積為1,它的周長為4cm,那么扇形的圓心角的大小為____________.16.已知數列滿足,,則_______;_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(1)求的值;(2)求的最大值和最小值.18.已知函數.(1)求函數的最小正周期;(2)求函數的單調遞增區間.19.在中,分別為角所對應的邊,已知,,求的長度.20.已知等差數列滿足.(1)求的通項公式;(2)設等比數列滿足,求的前項和.21.已知數列的前項和為,且滿足.(1)求證:數列是等比數列;(2)設,數列的前項和為,求證:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作216個,由正方體的結構及鋸木塊的方法,可知一面帶有紅漆的木塊是每個面的中間那16塊,共有6×16=96個,由此能求出從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率.【詳解】有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作216個,由正方體的結構及鋸木塊的方法,可知一面帶有紅漆的木塊是每個面的中間那16塊,共有6×16=96個,∴從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率:p.故選C.【點睛】本題考查概率的求法,考查古典概型、正方體的結構特征等基礎知識,考查運算求解能力,是基礎題.對于古典概型,要求事件總數是可數的,滿足條件的事件個數可數,使得滿足條件的事件個數除以總的事件個數即可.2、B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.3、D【解析】由題意可得三棱錐的三對對棱分別相等,所以可將三棱錐補成一個長方體,如圖所示,該長方體的外接球就是三棱錐的外接球,長方體共頂點的三條面對角線的長分別為,設球的半徑為,則有,在中,由余弦定理得,再由正弦定理得為外接圓的半徑),則,因此球心到平面的距離,故選D.點睛:本題主要考查了球的組合體問題,本題的解答中采用割補法,考慮到三棱錐的三對對棱相等,所以可得三棱錐補成一個長方體,長方體的外接球就是三棱錐的外接球,求出求出球的半徑,進而求解距離,其中正確認識組合體的特征和恰當補形時解答的關鍵.4、C【解析】

記事件,基本事件是線段的長度,如下圖所示,作于,作于,根據三角形的面積關系得,再由三角形的相似性得,可得事件的幾何度量為線段的長度,可求得其概率.【詳解】記事件,基本事件是線段的長度,如下圖所示,作于,作于,因為,則有;化簡得:,因為,則由三角形的相似性得,所以,事件的幾何度量為線段的長度,因為,所以的面積大于的概率.故選:C【點睛】本題考查幾何概型,屬于基礎題.常有以下一些方面需考慮幾何概型,求解時需注意一些要點.(1)當試驗的結果構成的區域為長度、面積、體積等時,應考慮使用幾何概型求解.(2)利用幾何概型求概率時,關鍵是試驗的全部結果構成的區域和事件發生的區域的尋找,有時需要設出變量,在坐標系中表示所需要的區域。(3)幾何概型有兩個特點:一是無限性,二是等可能性.基本事件可以抽象為點,盡管這些點是無限的,但它們所占據的區域都是有限的,因此可用"比例解法求解幾何概型的概率.5、B【解析】

利用余弦定理和勾股定理可證得;取,作,根據平面向量平行四邊形法則可知點軌跡為線段,由此可確定,利用勾股定理可求得結果.【詳解】由余弦定理得:如圖,取,作,交于在內(包含邊界)點軌跡為線段當與重合時,最大,即故選:【點睛】本題考查向量模長最值的求解問題,涉及到余弦定理解三角形的應用;解題關鍵是能夠根據平面向量線性運算確定動點軌跡,根據軌跡確定最值點.6、C【解析】

將三視圖還原,即可求組合體體積【詳解】將三視圖還原成如圖幾何體:半個圓柱和半個圓錐的組合體,底面半徑為2,高為4,則體積為,利用張衡的結論可得故選C【點睛】本題考查三視圖,正確還原,熟記圓柱圓錐的體積是關鍵,是基礎題7、A【解析】

分別計算出每個面積,相加得到答案.【詳解】故答案選A【點睛】本題考查了圖像的表面積,意在考查學生的計算能力.8、B【解析】

利用平面向量數量積的定義計算出的值,由可得出,利用平面向量數量積的運算律可求得實數的值.【詳解】,,向量與的夾角為,,,,解得.故選:B.【點睛】本題考查利用向量垂直求參數,考查計算能力,屬于基礎題.9、A【解析】

計算數據中心點,代入回歸方程得到答案.【詳解】x=4+6+113=7,代入回歸方程y7=-0.8×7+a故答案選A【點睛】本題考查了回歸方程,掌握回歸方程過中心點是解題的關鍵.10、A【解析】

根據題意,原題等價于,再討論即可得到結論.【詳解】由題,故函數有一個零點等價于即當時,,,符合題意;當,時,令,滿足解得,綜上的取值范圍是或故選:A.【點睛】本題考查函數的零點,對數函數的性質,二次函數根的分布問題,考查了分類討論思想,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出直線與直線所成角的余弦值.【詳解】解:四棱錐中,所有棱長均為2,是底面正方形中心,為中點,,平面,以為原點,為軸,為軸,為軸,建立如圖所示的空間直角坐標系,則,,,,,∴,,設直線與直線所成角為,則,直線與直線所成角的余弦值為.故答案為:.【點睛】本題主要考查異面直線所成角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,屬于中檔題.12、【解析】

由兩點求斜率公式及斜率等于傾斜角的正切值列式求解.【詳解】解:由已知可得:,即,則.故答案為.【點睛】本題考查直線的斜率,考查直線傾斜角與斜率的關系,是基礎題.13、【解析】

設,則,由題意得:,由此能求出的值.【詳解】設,則,由題意得:,解得,.故答案為:.【點睛】本題考查兩線段比值的求法、三棱柱的體積等基礎知識,考查運算求解能力,是中檔題.14、【解析】

以為軸建立平面直角坐標系,設,用t表示,求其最小值即可得到本題答案.【詳解】過點A作BC的垂線,垂足為O,以為軸建立平面直角坐標系.作PM垂直BC交于點M,QH垂直y軸交于點H,CN垂直HQ交于點N.設,則,故有所以,,當時,取最小值.故答案為:【點睛】本題主要考查利用建立平面直角坐標系解決向量的取值范圍問題.15、【解析】

根據扇形的面積和周長列方程組解得半徑和弧長,再利用弧長公式可求得結果.【詳解】設扇形的半徑為,弧長為,圓心角為,則,解得,所以.故答案為:【點睛】本題考查了扇形的面積公式,考查了扇形中弧長公式,屬于基礎題.16、【解析】

令代入可求得;方程兩邊取倒數,構造出等差數列,即可得答案.【詳解】令,則;∵,∴數列為等差數列,∴,∴.故答案為:;.【點睛】本題考查數列的遞推關系求通項,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意兩邊取倒數,構造新等差數列的方法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】

(1)直接將值代入即可求得對應的函數值.(2)將函數化簡為的形式,并求出最大值,最小值【詳解】(1).(2),當時,取得最大值;當時,取得最小值.【點睛】本題主要考查了求三角函數值、三角恒等變換以及三角函數的性質,屬于基礎題.18、(1);(2).【解析】

(1)利用三角恒等變換思想得出,利用周期公式可計算出函數的最小正周期;(2)解不等式,即可得出函數的單調遞增區間.【詳解】(1),所以,函數的最小正周期為;(2)令,可得,因此,函數的單調遞增區間為.【點睛】本題考查正弦型函數周期和單調區間的求解,解題的關鍵在于利用三角函數解析式化簡,考查計算能力,屬于中等題.19、或【解析】

由已知利用三角形的面積公式可得,可得或,然后分類討論利用余弦定理可求的值.【詳解】由題意得,即,或,又,當時,,可得,當時,,可得,故答案:或.【點睛】本題主要考查了三角形面積公式,余弦定理等知識解三角形,屬于基礎題.20、(1)(2)【解析】

(1)根據基本元的思想,將已知條件轉化為的形式,列方程組,解方程組可求得的值.并由此求得數列的通項公式.(2)利用(1)的結論求得的值,根據基本元的思想,,將其轉化為的形式,由此求得的值,根據等比數列前項和公式求得數列的前項和.【詳解】解:(1)設的公差為,則由得,故的通項公式,即.(2)由(1)得.設的公比為,則,從而,故的前項和.【點睛】本小題主要考查利用基本元的思想解有關等差數列和等比數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論