




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省泉港區(qū)第二中學2023-2024學年數(shù)學高一下期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.等差數(shù)列滿足,則其前10項之和為()A.-9 B.-15 C.15 D.2.若直線x+(1+m)y-2=0與直線mx+2y+4=0平行,則m的值是()A.1 B.-2 C.1或-2 D.3.已知函數(shù)是定義在上的偶函數(shù),且在區(qū)間上單調遞增.若實數(shù)滿足,則的最大值是()A.1 B. C. D.4.一個人連續(xù)射擊三次,則事件“至少擊中兩次”的對立事件是()A.恰有一次擊中 B.三次都沒擊中C.三次都擊中 D.至多擊中一次5.把函數(shù)的圖象經(jīng)過變化而得到的圖象,這個變化是()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位6.下面一段程序執(zhí)行后的結果是()A.6 B.4 C.8 D.107.如圖,在中,,用向量,表示,正確的是A. B.C. D.8.三棱錐中,底面是邊長為2的正三角形,⊥底面,且,則此三棱錐外接球的半徑為()A. B. C. D.9.如圖所示,在ΔABC,已知∠A:∠B=1:2,角C的平分線CD把三角形面積分為3:2兩部分,則cosAA.13 B.12 C.310.兩數(shù)1,25的等差中項為()A.1 B.13 C.5 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,則在方向上的投影為______.12.已知函數(shù)f(x)的圖象恒過定點P,則點P的坐標是____________.13.在中,,,則角_____.14.已知實數(shù),滿足不等式組,則的最大值為_______.15.數(shù)列滿足,,則___________.16.已知無窮等比數(shù)列的所有項的和為,則首項的取值范圍為_____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列{bn}的前n項和,n∈N*.(1)求數(shù)列{bn}的通項公式;(2)記,求數(shù)列{cn}的前n項和Sn;(3)在(2)的條件下,記,若對任意正整數(shù)n,不等式恒成立,求整數(shù)m的最大值.18.已知等比數(shù)列的公比,且,.(1)求數(shù)列的通項公式;(2)設,是數(shù)列的前項和,對任意正整數(shù)不等式恒成立,求的取值范圍.19.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面積.20.已知,,且向量與的夾角為.(1)若,求;(2)若與垂直,求.21.某科技創(chuàng)新公司在第一年年初購買了一臺價值昂貴的設備,該設備的第1年的維護費支出為20萬元,從第2年到第6年,每年的維修費增加4萬元,從第7年開始,每年維修費為上一年的125%.(1)求第n年該設備的維修費的表達式;(2)設,若萬元,則該設備繼續(xù)使用,否則須在第n年對設備更新,求在第幾年必須對該設備進行更新?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,從而a1+a10=±3.所以S10=×10=±15.故選D.2、A【解析】
分類討論直線的斜率情況,然后根據(jù)兩直線平行的充要條件求解即可得到所求.【詳解】①當時,兩直線分別為和,此時兩直線相交,不合題意.②當時,兩直線的斜率都存在,由直線平行可得,解得.綜上可得.故選A.【點睛】本題考查兩直線平行的等價條件,解題的關鍵是將問題轉化為對直線斜率存在性的討論.也可利用以下結論求解:若,則且或且.3、D【解析】由圖象性質可知,,解得,故選D。4、D【解析】
根據(jù)判斷的原則:“至少有個”的對立是“至多有個”.【詳解】根據(jù)判斷的原則:“至少擊中兩次”的對立事件是“至多擊中一次”,故選D.【點睛】至多至少的對立事件問題,可以采用集合的補集思想進行轉化.如“至少有個”則對應“”,其補集應為“”.5、B【解析】
試題分析:,與比較可知:只需將向右平移個單位即可考點:三角函數(shù)化簡與平移6、A【解析】
根據(jù)題中的程序語句,直接按照順序結構的功能即可求出。【詳解】由題意可得:,,,所以輸出為6,故選A.【點睛】本題主要考查順序結構的程序框圖的理解,理解語句的含義是解題關鍵。7、C【解析】
由得,再由向量的加法得,最后把代入,求得答案.【詳解】因為,故選C.【點睛】本題考查向量的加法和數(shù)乘運算的幾何意義,考查平面向量基本定理在圖形中的應用.8、D【解析】
過的中心M作直線,則上任意點到的距離相等,過線段中點作平面,則面上的點到的距離相等,平面與的交點即為球心O,半徑,故選D.考點:求解三棱錐外接球問題.點評:此題的關鍵是找到球心的位置(球心到4個頂點距離相等).9、C【解析】
由兩個三角形的面積比,得到邊ACCB=32,利用正弦定理【詳解】∵角C的平分線CD,∴∠ACD=∠BCD∵S∴設AC=3x,CB=2x,∵∠A:∠B=1:2,設∠A=α,∠B=2α,在ΔABC中,利用正弦定理2xsin解得:cosα=【點睛】本題考查三角形面積公式、正弦定理在平面幾何中的綜合應用.10、B【解析】
直接利用等差中項的公式求解.【詳解】由題得兩數(shù)1,25的等差中項為.故選:B【點睛】本題主要考查等差中項的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由平面向量投影的定義可得出在方向上的投影為,從而可計算出結果.【詳解】設平面向量與的夾角為,則在方向上的投影為.故答案為:.【點睛】本題考查平面向量投影的計算,熟悉平面向量投影的定義是解題的關鍵,考查計算能力,屬于基礎題.12、(2,4)【解析】
令x-1=1,得到x=2,把x=2代入函數(shù)求出定點的縱坐標得解.【詳解】令x-1=1,得到x=2,把x=2代入函數(shù)得,所以定點P的坐標為(2,4).故答案為:(2,4)【點睛】本題主要考查對數(shù)函數(shù)的定點問題,意在考查學生對該知識的理解掌握水平,屬于基礎題.13、或【解析】
本題首先可以通過解三角形面積公式得出的值,再根據(jù)三角形內角的取值范圍得出角的值。【詳解】由解三角形面積公式可得:即因為,所以或【點睛】在解三角形過程中,要注意求出來的角的值可能有多種情況。14、2【解析】
作出不等式組表示的平面區(qū)域,根據(jù)目標函數(shù)的幾何意義,結合圖象,即可求解,得到答案.【詳解】由題意,作出不等式組表示的平面區(qū)域,如圖所示,又由,即表示平面區(qū)域內任一點與點之間連線的斜率,顯然直線的斜率最大,又由,解得,則,所以的最大值為2.【點睛】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結合思想,及推理與計算能力,屬于基礎題.15、2【解析】
利用遞推公式求解即可.【詳解】由題得.故答案為2【點睛】本題主要考查利用遞推公式求數(shù)列中的項,意在考查學生對這些知識的理解掌握水平,屬于基礎題.16、【解析】
設等比數(shù)列的公比為,根據(jù)題意得出或,根據(jù)無窮等比數(shù)列的和得出與所滿足的關系式,由此可求出實數(shù)的取值范圍.【詳解】設等比數(shù)列的公比為,根據(jù)題意得出或,由于無窮等比數(shù)列的所有項的和為,則,.當時,則,此時,;當時,則,此時,.因此,首項的取值范圍是.故答案為:.【點睛】本題考查利用無窮等比數(shù)列的和求首項的取值范圍,解題的關鍵就是結合題意得出首項和公比的關系式,利用不等式的性質或函數(shù)的單調性來求解,考查分析問題和解決問題的能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)bn=3n﹣2,n∈N*.(2);(3)最大值為1.【解析】
(1)利用,求得數(shù)列的通項公式.(2)利用裂項求和法求得數(shù)列的前項和.(3)由(2)求得的表達式,記不等式左邊為,利用差比較法判斷出的單調性,進而求得的最小值,由此列不等式求得的取值范圍,進而求得整數(shù)的最大值.【詳解】(1)∵數(shù)列{bn}的前n項和,n∈N*.∴①當n=1時,b1=T1=1;②當n≥2時,bn=Tn﹣Tn﹣1=3n﹣2;∴bn=3n﹣2,n∈N*.(2)由(1)可得:;∴Sn=c1+c2+…+cn,,,;(3)由(2)可知:n;∴;設f(n);則f(n+1)﹣f(n)=()﹣()0;所以f(n+1)>f(n),故f(n)的最小值為f(1);∵對任意正整數(shù)n,不等式恒成立,∴恒成立,即m<12;故整數(shù)m的最大值為1.【點睛】本小題主要考查已知求,考查裂項求和法,考查數(shù)列單調性的判斷方法,考查不等式恒成立問題的求解,屬于中檔題.18、(1);(2)【解析】
(1)由,,根據(jù)等比數(shù)列的通項公式可解得,,進而可得答案;(2)根據(jù)錯位相減法求出,代入不等式得對任意正整數(shù)恒成立,設,對分奇偶討論,可得答案.【詳解】(1)因為,所以.又因為,所以,,所以數(shù)列的通項公式為.(2)因為,所以,,兩式相減得,,所以.所以對任意正整數(shù)恒成立.設,易知單調遞增.當為奇數(shù)時,的最小值為,所以,解得;當為偶數(shù)時,的最小值為,所以.綜上,,即的取值范圍是.【點睛】本題考查了求等比數(shù)列的通項公式,考查了錯位相減法求和,考查了數(shù)列的單調性,考查了不等式恒成立,屬于中檔題.19、(1)(2)【解析】
(1)由已知及正弦定理可得sinC的值,利用大邊對大角可求C為銳角,根據(jù)同角三角函數(shù)基本關系式可求cosC的值.(2)利用三角形內角和定理,兩角和的正弦函數(shù)公式可求sinB的值,根據(jù)三角形的面積公式即可計算得解.【詳解】(1)由題意,BC=7,AB=3,∠A=60°.∴由正弦定理可得:sinC=∵BC>AB,∴C為銳角,∴cosC===,(2)因為A+B+C=π,A=60°,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+=,∴S△ABC=BC?AB?sinB=.【點睛】本題主要考查了正弦定理,大邊對大角,同角三角函數(shù)基本關系式,三角形內角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.20、(1);(2)【解析】
(1)根據(jù)平面向量的數(shù)量積公式計算的值;(2)根據(jù)兩向量垂直數(shù)量積為0,列方程求出cosθ的值和對應角θ的值.【詳解】(1)因為,所以(2)因為與垂直,所以即,所以又,所以【點睛】本題考查了平面向量的數(shù)量積與模長和夾角的計算問題,是基礎題.21、(1)(2)第9年【解析】
(1)將數(shù)列分為兩部
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 以公司角度寫團建活動方案
- 仰天山研學活動方案
- 任性貸以舊換新活動方案
- 企業(yè)產(chǎn)品活動方案
- 企業(yè)全員活動方案
- 企業(yè)寫作培訓活動方案
- 企業(yè)單位公司年會活動方案
- 企業(yè)咖啡品鑒活動方案
- 企業(yè)垂釣活動方案
- 企業(yè)開展捐書活動方案
- 機械制圖與識圖基礎知識培訓
- 2023年德國專利法中文版
- 常見異常心電圖正確識別理論考核試題題庫及答案
- YS/T 118.16-2012重有色冶金爐窯熱平衡測定與計算方法(銅閃速爐)
- GB/T 13540-2009高壓開關設備和控制設備的抗震要求
- 歐陸EV500變頻器使用手冊附錄1
- 夜宿山寺-優(yōu)質課件
- 5-1貫入法砌筑砂漿砂漿抗壓強度檢測方案
- 國開現(xiàn)代漢語專題形考任務4試題及答案
- 錨桿加固施工方案(通用版)
- 填石路堤沉降差檢測記錄表
評論
0/150
提交評論